

CEC Project 153-121.0001 On behalf of Bond Safeguard Insurance Company, Civil & Environmental Consultants, Inc. is submitting four copies of the revised Final Closure/Post-Closure Plan for the Central Waste Disposal Facility (CWDF) in Alliance, Mahoning County, Ohio. The CWDF is owned by Central Waste, Inc. and will be closed in accordance with Permit to Install (PTI) No. 02-14224 issued March 1, 2005 and the revised

The revised Final Closure/Post-Closure Plan incorporates BSIC and the Ohio EPA comments from the February 2016.

If you have any questions, please call us at 412-429-2324.

Sincerely,

CIVIL & ENVIRONMENTAL CONSULTANTS, INC.

Final Closure/Post-Closure Plan.

Matt Foltz, 🕻 Project Consultant

Im Ino

OHIO ENV

UTECTION AGENCY

Duane R. Lanoue, P.E. Principal

Enclosure

Craig Butler - Director Ohio EPA, CDO (without enclosure) cc: Commissioners - Mahoning County Solid Waste District (without enclosure B 1 6 2016 Dave Fetchko - District Board of Health - Mahoning County (with enclosure) Gene Stoll - Bond Safeguard Insurance Company (with enclosure) Joe Costa, Central Waste Disposal Facility (with enclosure) LETTER OF APPROVAL HERETO ATTACHED

153-121.0001-L-Rev FCPC Plan.2-9-16/P

333 Baldwin Road | Pittsburgh, PA 15205 | p: 412-429-2324 f: 412-429-2114 | www.cecinc.com

FINAL CLOSURE/POST-CLOSURE PLAN

CENTRAL WASTE DISPOSAL FACILITY SMITH TOWNSHIP, MAHONING COUNTY, OHIO

Prepared for:

BOND SAFEGUARD INSURANCE COMPANY ("BSIC") 900 South Frontage Road, Suite 250 Woodridge, IL 60517

Prepared by:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. ("CEC") 333 Baldwin Road Pittsburgh, Pa 15205

> OCTOBER 2015 Revised December 2015 Revised February 2016

CEC Project 153-121.0001

FINAL CLOSURE/POST-CLOSURE PLAN CENTRAL WASTE DISPOSAL FACILITY SMITH TOWNSHIP, MAHONING COUNTY, OHIO

TABLE OF CONTENTS

11(A) APPLICABILITY. 4 11(A)(1) Operating Record 4 11(A)(2) Acceptance of Waste Ceased Prior to June 1, 1994. 4 11(B) FINAL CLOSURE/POST-CLOSURE PLAN. 4 11(B)(1) Facility Name and Location 4 11(B)(2) Variances and Exemptions 4 11(B)(3) Facility Contact 5 11(B)(3) Facility Contact 5 11(B)(3) Compliance with OAC 3745-27-06. 6 (a) Plan Drawings - Composite Cap System 6 (b) Grid System 6 (c) Detail Drawings - Composite Cap System 6 (d) Detail Drawings - Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance. 9 (g) Kinancial Assurance/Quality Control Plan 10 11(B)(6) Final Cover Material, Availability and Suitability. 9 11(B)(10) Contingencey Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) (COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)	INTRODUCTION	1
11(A)(2) Acceptance of Waste Ceased Prior to June 1, 1994		
11(B) FINAL CLOSURE/POST-CLOSURE PLAN. 4 11(B)(1) Facility Name and Location 4 11(B)(2) Variances and Exemptions 4 11(B)(3) Facility Contact 5 11(B)(4) Installation Of Explosive Gas Control System 5 11(B)(5) Compliance with OAC 3745-27-06. 6 (a) Plan Drawings - Composite Cap System 6 (b) Grid System 6 (c) Detail Drawings - Composite Cap System 6 (d) Detail Drawings - Composite Cap System 6 (d) Detail Drawings - Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance. 9 11(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(6) Explosive Gas Monitoring Plan 10 11(B)(8) Explosive Gas Monitoring Plan 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System De	11(A)(1) Operating Record	4
11(B)(1) Facility Name and Location	11(A)(2) Acceptance of Waste Ceased Prior to June 1, 1994	4
11(B)(1) Facility Name and Location	11(B) FINAL CLOSURE/POST-CLOSURE PLAN	4
11(B)(2) Variances and Exemptions 4 11(B)(3) Facility Contact 5 11(B)(4) Installation Of Explosive Gas Control System 5 11(B)(5) Compliance with OAC 3745-27-06. 6 (a) Plan Drawings – Composite Cap System 6 (b) Grid System 6 (c) Detail Drawings – Composite Cap System 6 (d) Detail Drawings – Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance 9 (g) Financial Assurance/Quality Control Plan 10 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 13 11(G)(2) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976. 15 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July	11(B)(1) Facility Name and Location	4
11(B)(3) Facility Contact 5 11(B)(4) Installation Of Explosive Gas Control System 5 11(B)(5) Compliance with OAC 3745-27-06. 6 (a) Plan Drawings – Composite Cap System 6 (b) Grid System 6 (c) Detail Drawings – Composite Cap System 6 (d) Detail Drawings – Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance 9 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 11(G)(2) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4)	11(B)(2) Variances and Exemptions	4
11(B)(4) Installation Of Explosive Gas Control System 5 11(B)(5) Compliance with OAC 3745-27-06. 6 (a) Plan Drawings – Composite Cap System 6 (b) Grid System 6 (c) Detail Drawings – Composite Cap System 6 (d) Detail Drawings – Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance. 9 (g) Financial Assurance. 9 11(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(6) Fontorial 10 11(B)(6) Explosive Gas Monitoring Plan 10 11(B)(1) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF ACTUAL DATE 12		
11(B)(5) Compliance with OAC 3745-27-06		
(a) Plan Drawings - Composite Cap System 6 (b) Grid System 6 (c) Detail Drawings - Composite Cap System 6 (d) Detail Drawings - Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance 9 1(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(9) Erosion Control 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(2) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective June 1, 1994 14 11(G)(4) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Complia		
(b) Grid System6(c) Detail Drawings – Composite Cap System6(d) Detail Drawings – Surface Water Control Structures7(e) Static and Seismic Stability7(f) Groundwater Detection Monitoring Program9(g) Financial Assurance911(B)(6) Final Cover Material, Availability and Suitability911(B)(7) Quality Assurance/Quality Control Plan1011(B)(8) Explosive Gas Monitoring Plan1011(B)(9) Erosion Control1011(B)(9) Erosion Control1011(B)(10) Contingency Plans1111(C) MANDATORY CLOSURE1211(E) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE1211(E) NOTIFICATION OF ACTUAL DATE1211(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System Deci CAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(4) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES151111(H) COMPLATE CLOSURE ACTIVITIES1511(H) OTHER CLOSURE ACTIVITIES1511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16		
(c) Detail Drawings – Composite Cap System 6 (d) Detail Drawings – Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance. 9 9 (g) Financial Assurance. 9 11(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(8) Explosive Gas Monitoring Plan 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) (1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 <td< td=""><td></td><td></td></td<>		
(d) Detail Drawings – Surface Water Control Structures 7 (e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance. 9 11(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) (2) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	(c) Detail Drawings – Composite Cap System	6
(e) Static and Seismic Stability 7 (f) Groundwater Detection Monitoring Program 9 (g) Financial Assurance. 9 11(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(9) Explosive Gas Monitoring Plan 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976. 15 11(G)(4) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976. 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16		
(f) Groundwater Detection Monitoring Program9(g) Financial Assurance.911(B)(6) Final Cover Material, Availability and Suitability911(B)(7) Quality Assurance/Quality Control Plan1011(B)(7) Quality Assurance/Quality Control Plan1011(B)(8) Explosive Gas Monitoring Plan1011(B)(9) Erosion Control1011(B)(10) Contingency Plans1111(C) MANDATORY CLOSURE1211(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE1211(E) NOTIFICATION OF ACTUAL DATE1211(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976.1511(H) OTHER CLOSURE ACTIVITIES1511(H) COMPLANCE CONTRUCTION1511(H) COMPLANCE CONTRUCTION1511(G)(2) Surface Water and Erosion Control16		
(g) Financial Assurance.911(B)(6) Final Cover Material, Availability and Suitability911(B)(7) Quality Assurance/Quality Control Plan1011(B)(8) Explosive Gas Monitoring Plan1011(B)(9) Erosion Control1011(B)(9) Erosion Control1011(B)(10) Contingency Plans1111(C) MANDATORY CLOSURE1211(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE1211(E) NOTIFICATION OF ACTUAL DATE1211(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(2) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 19761511(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES1511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16		
11(B)(6) Final Cover Material, Availability and Suitability 9 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(8) Explosive Gas Monitoring Plan 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(2) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	(g) Financial Assurance	9
11(B)(7) Quality Assurance/Quality Control Plan 10 11(B)(8) Explosive Gas Monitoring Plan 10 11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(2) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	11(B)(6) Final Cover Material, Availability and Suitability	9
11(B)(9) Erosion Control 10 11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976. 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16		
11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	11(B)(8) Explosive Gas Monitoring Plan	10
11(B)(10) Contingency Plans 11 11(C) MANDATORY CLOSURE 12 11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE 12 11(E) NOTIFICATION OF ACTUAL DATE 12 11(F) FINAL CLOSURE ACTIVITIES 12 11(G) COMPOSITE CAP SYSTEM CONSTRUCTION 13 11(G)(1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	11(B)(9) Erosion Control	10
11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE	11(B)(10) Contingency Plans	11
11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE		
11(E) NOTIFICATION OF ACTUAL DATE.1211(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976.1511(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16	11(C) MANDATORY CLOSURE	12
11(E) NOTIFICATION OF ACTUAL DATE.1211(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976.1511(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16	UND NOTEICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE	12
11(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 19761511(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16	The photo of ball to class accel takes of bobb who is an and the second states of bobb who is a second state of bobb who is a	
11(F) FINAL CLOSURE ACTIVITIES1211(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 19761511(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16	11(E) NOTIFICATION OF ACTUAL DATE	12
11(G) COMPOSITE CAP SYSTEM CONSTRUCTION1311(G)(1) Composite Cap System Design1311(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 19941411(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 19761511(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 19941511(H) OTHER CLOSURE ACTIVITIES1511(H)(1) Compliance with Rule 3745-27-191511(H)(2) Surface Water and Erosion Control16		
11(G)(1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	11(F) FINAL CLOSURE ACTIVITIES	12
11(G)(1) Composite Cap System Design 13 11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976 15 11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	LUG) COMPOSITE CAP SYSTEM CONSTRUCTION	13
11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994 14 11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976		
11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976	11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective lune 1 1994	
11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994 15 11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	L1(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976	
11(H) OTHER CLOSURE ACTIVITIES 15 11(H)(1) Compliance with Rule 3745-27-19 15 11(H)(2) Surface Water and Erosion Control 16	11(G)(4) Composite Can System per OAC 3745-27-11(M) Effective June 1, 1994	15
11(H)(1) Compliance with Rule 3745-27-19		
11(H)(1) Compliance with Rule 3745-27-19	11(H) OTHER CLOSURE ACTIVITIES	15
11(H)(2) Surface Water and Erosion Control	11(H)(1) Compliance with Rule 3745-27-19	15
11(H)(3) Groundwater Monitoring System	11(H)(2) Surface Water and Erosion Control	16
	11(H)(3) Groundwater Monitoring System	17

Table of Contents (continued) Page ii

,

.

11(H)(4) Vector Control. 17 11(H)(5) Verification of Notices. 18 11(H)(6) Posting of Signs 18 11(H)(7) Unauthorized Access. 18	8 8
11(I) COMPLETION OF FINAL CLOSURE ACTIVITIES	8
11(J) FINAL CLOSURE CERTIFICATION 19 11(J)(1) List of Construction Certification Reports 19 11(J)(2) Groundwater Monitoring System 19 11(J)(3) Plat and Deed 19 11(J)(4) Posted Signs 19	9 9 9
11(K) ENTRANCE TO FACILITY	0
11(L) FINAL CLOSURE OF UNIT	0
14(A) POST-CLOSURE ACTIVITIES 20 14(A)(1) Continuing Operation and Maintenance of Landfill Systems 20 14(A)(2) Maintaining the Integrity and Effectiveness of the Final cover System 22 14(A)(3) Leachate Outbreak Repair 22 14(A)(4) Quarterly Inspection of the Sanitary Landfill Facility 23 14(A)(5) Monitoring and Reporting Requirements 22 14(A)(6) Annual Report 22 14(A)(7) Reports and Record Keeping 24	0 2 3 3 4 4
14(B) WRITTEN CERTIFICATION	4
14(C) COMPLETION OF GROUNDWATER DETECTION MONITORING IN NON-CONTIGUOUS UNIT	
14(D) ENTRANCE TO FACILITY	5
APPENDICES	

- APPENDIX A Closure Plan Drawings
- APPENDIX B 2008 Final Cover Stability Analysis
- APPENDIX C Attachment A Construction Quality Assurance/Quality Control Plan APPENDIX D 2008 Final Cover RSB Permeability Results

FINAL CLOSURE/POST-CLOSURE PLAN

INTRODUCTION

This Final Closure/Post-Closure Plan (Closure Plan) has been prepared for the Central Waste Disposal Facility (CWDF). The CWDF will be closed in accordance with Permit to Install (PTI) No. 02-14224 issued March 1, 2005. The CWDF is currently owned by Central Waste, Inc. (CWI). The permitted limit of waste placement is approximately 56.7 acres. As of October 2015, waste has been placed in Phases 1 through 6B over approximately 46.0 acres.

The existing grades of the landfill beyond the 2008 final cover area have grades that are either less than the minimum 5 percent slope in the previous working area at the top of the landfill or grades steeper than 3H:1V slopes due to settlement. The Closure Plan will address the regrading of waste to develop minimum and maximum grades that allow for a balance of excavation and fill volumes and the final cover system construction of the existing waste placement area.

In 2008, a 10.6 acre final cover system construction was partially completed. Construction was halted when a portion of the vegetative cover and geocomposite on the lower southwest slope failed. When halted, the installation of the recompacted soil barrier, geomembrane and geocomposite layers had been completed. Approximately 5.8 acres of vegetative cover had been placed. In addition, approximately 4.7 acres of transitional cover was constructed in 2008 on the east and west slopes directly north of the 2008 final cover construction. This Closure Plan will address the completion and repair of the 2008 final cover system and transitional cover.

In conjunction with the construction of the cell liner system for Phase 4 through 6B, an unlined waste area, permitted under PTI No. 02-880, within the permitted limits of waste was required to be relocated to the lined areas. At the completion of waste relocation activities for the Phase 5A, 5B and 6B liner construction, the southern edge of the unlined waste was temporarily covered with intermediate cover. The undisturbed portion of the unlined waste area was closed with a "1976 Cap" in accordance with Ohio EPA Guidance Document 0123. This Closure Plan will address the closure of the southern edge of the unlined waste area.

This Closure Plan incorporates the following variance request in accordance with OAC 3745-27-03(C):

Proposed waste regrading of the existing waste within Phase 1 through 6B to meet the minimum slope of 5% and maximum slope of 3H:1V in accordance with OAC 3745-27-08 (C)(4)(c) and (d) except for approximately 6.3 acres where the minimum proposed grade is 3%. This is discussed in more detail in Section 11(B)(5)(e).

This Closure Plan incorporates the following alteration requests/other changes as follows:

- Proposed completion of a 3.3 acre area of the 2008 Final Cover construction without the removal of the existing recompacted soil barrier and geosynthetics based on meeting the minimum slope stability requirements and the completion of the existing vegetative cover layer to meet the minimum 30-inch thickness requirement. This is discussed in more detail in Section 11(B)(5)(e).
- 2. Proposed existing recompacted soil barrier requirements within the 4.9 acre area of exposed geosynthetics of the 2008 Final Cover construction that allow for the repair and recompaction of the top lift of recompacted soil barrier if in-situ permeability test results indicate a minimum permeability of 1.0 x 10⁻⁶ cm/s can be achieved. This is discussed in more detail in Section 11(G)(1).
- 3. Proposed methods to verify the 1976 Cap requirement of a minimum 2 feet thick layer of soil exists at the southern edge of the existing unlined waste area north of the current landfill limits. This is discussed in more detail in Section 11(G)(1).
- 4. Proposed design of the Phase 2B leachate collection sump and conveyance system based on current conditions with the sump pump installed through the leachate collection and cleanout pipe and the leachate forcemain installed within the waste and connected to the existing forcemain near the Phase 2A sump riser. This is discussed in more detail in Section 11(H)(1).

- 5. Proposed passive gas venting system installation since the landfill does not meet the minimum requirements of the New Source Performance Standards (NSPS) for the Non-Methane Organic Compound (NMOC) emissions rate of 50 Mg/yr based on Tier II test results from the November and December 2014 sampling event. This is discussed in more detail in Section 11(B)(4).
- 6. Proposed revisions to the Construction Quality Assurance (CQA) Plan for the soils and geosynthetics prequalification testing requirements in accordance with industry standards and Geosynthetic Research Institute (GRI) Standard Specifications. This is discussed in more detail in Section 11(B)(7).

This Closure Plan addresses the requirements of OAC Rule 3745-27-11 (Final Closure of a Sanitary Landfill Facility) and OAC Rule 3745-27-14 (Post-Closure Care of Sanitary Landfill Facilities). These rules require the plan to address OAC Rule 3745-27-10 (Groundwater Monitoring Program for a Sanitary Landfill Facility), OAC Rule 3745-27-12 (Explosive Gas Monitoring for a Sanitary Landfill Facility), OAC Rule 3745-27-15 (Financial Assurance for Solid Waste Facility Final Closure), and OAC Rule 3745-27-16 (Financial Assurance for Sanitary Landfill Facility Post-Closure Care).

This Closure Plan is presented in the order and format of the relevant regulations (OAC 3745-27-11 and Rule 3745-27-14) providing informational narrative to fulfill each regulation. Informational or policy portions of the regulations are not addressed in this plan.

There are no variances, other than the one specified above, or exemptions requested from the requirements of OAC Rule 3745-27-11 or OAC Rule 3745-27-14 or any alternative schedule for completing final closure and post-closure activities.

11(A) APPLICABILITY

11(A)(1) Operating Record

The Closure Plan will be kept in the operating record in accordance with OAC 3745-27-09.

11(A)(2) Acceptance of Waste Ceased Prior to June 1, 1994

The CWDF was closed on June 12, 2012 after filing for bankruptcy. The CWDF has ceased accepting waste.

11(B) FINAL CLOSURE/POST-CLOSURE PLAN

CWI has prepared this Closure Plan in accordance with this rule for the sanitary landfill facility, which will, at a minimum, contain all the items specified in paragraphs (B)(1) to (B)(6) of this rule. The Closure Plan will contain all of the items specified in paragraphs (B)(1) to (B)(6) of this rule for each noncontiguous unit of a sanitary landfill facility.

11(B)(1) Facility Name and Location

The CWDF is located in Smith Township, Mahoning County, Ohio at 12003 Oyster Road, Alliance, Ohio 44601. A location map showing the site on a United States Geological Survey (USGS) quadrangle is included on the Title Sheet of the Closure Plan drawing package.

11(B)(2) Variances and Exemptions

With the exception of the variance requested on page 2 of this Final Closure/Post Closure Plan, no variance or exemptions from OAC 3745-27-11, OAC 3745-27-14, or other rule in OAC Chapter 3745-27, or any alternative schedule for completing final closure activities, is proposed in the Closure Plan.

11(B)(3) Facility Contact

The CWDF contact regarding the sanitary landfill facility during closure and post-closure will be:

Joe Costa, General Manager Central Waste, Inc. 12003 Oyster Road Alliance, Ohio 44601 (724) 651-5429

Gene G. Stoll, P.E. Vice President of Engineering Bond Safeguard Insurance Company 900 South Frontage Road, Suite 250 Woodridge, IL 60517 (630) 495-9380

The Ohio EPA Northeast District Office will be notified in the event that the contact changes.

11(B)(4) Installation of Explosive Gas Control System

Municipal solid waste landfills produce gases (primarily methane and carbon dioxide) as a result of the decomposition of organic material within the waste. The purpose of a landfill gas control system is to control those gases generated within the landfill. Tier II testing was completed in November and December 2014 to determine if the site meets the minimum NSPS requirements for NMOC emission rate. The Tier II Landfill Gas Sampling Annual Report dated March 4, 2015 indicated that the NMOC emissions rate for the site in 2014 is below the NSPS emissions threshold of 50 Mg/yr based on the site-specific NMOC concentration yielded during the sampling event. Since the NMOC emissions rate is below the 50 Mg/yr threshold and no additional waste will be accepted, the NMOC emissions rate will not increase over time. Based on the NMOC emissions rate, an explosive gas collection and control system is not required per NSPS. A passive gas venting system will be installed to remove landfill gas through a series of vents spaced across the landfill. Sixteen gas extraction wells were previously installed and will be retrofitted as passive gas vents. An additional 29 passive gas vents will be installed in conjunction with final cover construction.

Since the waste within the landfill will be contained by a cell liner and final cover system, the gas generated by decomposing waste will be prevented from moving offsite. However, a passive gas venting system is needed to reduce the gas pressure placed on various landfill components, such as the FML within the final cover system. The passive gas venting system plan and details are provided in the Closure Plan drawing package.

11(B)(5) Compliance with OAC 3745-27-06

The Closure Plan drawings present the information as outlined in OAC 3745-27-06.

11(B)(5)(a) Plan Drawings

The Final Closure Plan Drawings provide a series of drawings depicting the closure design of the CWDF. The title sheet is provided as Drawing 1. Existing site conditions are presented on Drawing 2. The vertical and horizontal limits of the existing, permitted, and proposed top of waste grades are provided on Drawings 3 through 5. A waste relocation isopach is provided on Drawing 6 to show the thickness of waste cuts and fills required to achieve the proposed top of waste grades over the landfill. Drawing 7 presents the final grades of the final cover system, passive gas venting system and surface water control structures. Drawings 8 and 9 provide details for the final cover system, the passive gas venting system and surface water control structures. The Closure Plan drawings are provided in Appendix A.

11(B)(5)(b) Grid System

A grid system with Ohio State Plane northing and easting coordinates spaced no more than 500 feet apart is provided on the Closure Plan drawings.

11(B)(5)(c) Detail Drawings - Composite Cap System

The components of the permitted final cover system, from the top to bottom, include:

- 30-inch thick Vegetative Cover Layer
- Double-Sided Geocomposite Drainage Layer
- 40-mil textured Linear Low Density Polyethylene (LLDPE) Flexible Membrane Liner (FML)
- 18-inch thick Recompacted Soil Barrier (RSB)

The unlined waste area north of the CWDF requires a 2 foot thick clay cover in accordance with the 1976 Cap requirements outlined in the Ohio EPA Guidance Document 0123 dated March 29, 1995.

Drawings 8 and 9 present the details of the final cover system, 1976 Cap, cap penetrations, anchor trenches and surface water control benches. The Closure Plan drawings are provided in Appendix A.

11(B)(5)(d) Detail Drawings - Surface Water Control Structures

The surface water drainage channels and letdown structures will be constructed in accordance with the approved permit and this Closure Plan. The drainage areas to the South Sedimentation Pond as set forth in PTI 02-14224 issued March 1, 2005 have not been revised as part of this Closure Plan. The drainage areas to the North Sedimentation Pond have been reduced since the final phase, Phase 7, was not constructed. The Closure Plan is not proposing any revisions to the existing sedimentation ponds and details of the sedimentation ponds and discharge structures are not included with the Closure Plan.

Drawings 8 and 9 present the details of the surface water drainage channels and letdown structures. The Closure Plan drawings are provided in Appendix A.

11(B)(5)(e) Static and Seismic Stability

A slope stability analysis was performed to evaluate the overall stability of the proposed final cover with respect to the final grades and the final cover system of the landfill. Both static and

seismic conditions were evaluated. The stability analysis evaluated the most probable potential shallow and deep failures through the interim waste and final cover grading. Results of the analysis indicate an acceptable factor of safety against slope failure for both static and seismic conditions. Slope stability analysis results are presented in Section (C)(4) of the PTI Application

Since the CWDF did not reach the permitted final waste grades over most of the landfill, the proposed final grading plan incorporates the following design revisions:

- A maximum waste height approximately 10 feet to 80 feet below permitted final waste grades;
- The landfill slopes range from 3% to 5% on the top and 3H:1V to 4H:1V grades on the slopes; and
- The north slope, which is at interim waste grades, will be regraded to incorporate an access road, surface water bench and letdown structure.

CEC, on behalf of BSIC, is proposing a variance request in accordance with OAC 3745-27-03(C) for a minimum waste grade of 3% over approximately 6.3 acres of the 46 acres of waste placement. The 3% waste grade is necessary to minimize the total volume of waste relocation and obtain a balance between the excavation and fill volumes. The balance of excavation and fill volumes is necessary so that additional waste does not need to be hauled offsite for disposal or so that additional waste or soil does not need to be hauled to the landfill. The 3% grade provides that positive drainage can be maintained and that ponding areas will not develop during settlement of waste over time.

Based on the existing and proposed waste grades at or below the final waste grades, a static and seismic stability analysis and the final cover veneer stability was not performed as part of this Closure Plan except for a 3.3 acre area of the 2008 Final Cover construction.

A 3.3 acre area of the partially constructed 2008 final cover system was evaluated for stability. This area encompasses portions of the east and west slopes in the northern most area of the 2008 final cover system. This area was not affected by the final cover failure and the vegetative cover

was almost completed in this area. CEC has evaluated the static and seismic stability of this area based on the existing grades and interface test results of the final cover components. The required factors of safety for static and seismic stability were met. The 2008 Final Cover Stability Analysis is included in Appendix B.

11(B)(5)(f) Groundwater Detection Monitoring Plan

The groundwater monitoring system is described in the approved Groundwater Detection Monitoring Program (Revision 9) dated June 18, 2015.

11(B)(5)(g) Financial Assurance

Financial assurance information, including cost estimates for final closure of the landfill and for the 30-year post-closure period, is addressed. In addition, the financial assurance mechanism as required by Rules 3745-27-15 and 3745-27-16 is addressed.

<u>Financial Assurance Instrument</u>: A financial assurance instrument based on previously approved closure and post-closure estimates for the landfill was executed. The closure and post closure costs were estimated at \$11,636,446.

<u>Closure Cost Estimate</u>: The closure costs were estimated at \$5,727,982.

Post-Closure Cost Estimate: The post-closure costs were estimated at \$5,908,464.

11(B)(6) Final Cover Material, Availability and Suitability

Soils for the RSB and vegetative cover layer will be obtained from the onsite Borrow Area C located southwest of the landfill.

The soils within Borrow Area C have previously been approved for recompacted soil barrier during the 2008 final cover construction and meet the prequalification requirements provided in

OAC 3745-27-08 (21)(f). It has been estimated that Borrow Area C has the required volume of soils necessary for both the RSB and vegetative cover layers.

11(B)(7) Quality Assurance/Quality Control Plan

The CQA/QC Plan provides a detailed description of the final cover system construction methods and construction quality assurance/quality control procedures. Attachment A of the CQA/QC Plan provides the revised material prequalification requirements for the final cover system components to meet current industry standards and GRI Standard Specifications. The revised Attachment A of the CQA/QC Plan is provided in Appendix C.

11(B)(8) Explosive Gas Monitoring Plan

The explosive gas monitoring system is described in the approved Explosive Gas Monitoring Plan.

11(B)(9) Erosion Control

The primary means to control erosion will be achieved by establishing and maintaining a dense, vegetative cover on the final cover. The surface of the final cover will be mulched, fertilized and seeded as soon as possible after construction. The seed mix used on the final cover will be dependent on the season and will include mixes previously demonstrated to provide a dense growth. Mulch will consist of hay or an approved equivalent (i.e., hydroseed mulch) applied to minimize erosion until the vegetation is established. Areas exhibiting excessive erosion will be regraded, reseeded, mulched, and fertilized as necessary.

Erosion may occur in and around surface water control structures which include surface water control benches, collection channels, culverts, perimeter channels and the sedimentation ponds. Surface water control structures will be lined with either riprap or vegetation to prevent erosion. Erosion matting may be used in grass lined benches and channels if necessary to prevent erosion.

Temporary erosion control measures include the use of sediment barriers, such as silt fences and filter socks, which will be used as necessary to reduce the sediment load in surface water run-off entering the sedimentation basin. They will also be used in areas where run-off cannot be diverted to the sedimentation basin.

Surface water runoff will be directed to the sedimentation ponds and north impoundment. The sedimentation ponds and north impoundment will reduce the transport of sediment offsite during and after earth moving activities associated with construction of the landfill. The north impoundment does not discharge offsite.

11(B)(10) Contingency Plans

Leachate: Leachate seeps are not anticipated in the landfill after construction of the final cover system. If seeps are detected, the area will be investigated by qualified personnel to determine the cause. If a breach in the RSB is suspected, the damaged portion of the final cover will be excavated and reconstructed. Leachate outbreaks will be prevented from flowing to the surface water control structures. CEC, on behalf of BSIC, will take immediate steps to eliminate or control the conditions contributing to leachate production or buildup, and will dispose of collected leachate in accordance with applicable law.

<u>Fire</u>: In the event of a fire during closure or post-closure periods, soil will be used to smother the flame. If a fire is burning uncontrollably, a fire break will be excavated to isolate the affected area. The local fire department will be contacted for all fires reported at the site.

<u>Differential Settlement</u>: Areas of landfill exhibiting excessive amounts of differential settlement may be excavated to determine the extent of potential problems. Remediation could include excavating the final cover system in the area of the potential problem to determine if the final cover system is damaged. If the final cover system is damaged, the area will be backfilled and the final cover system rebuilt over the new fill. If no damage to the final cover system is discovered, these areas will be repaired and regraded to promote run-off of surface water and reseeded. Areas will be repaired as weather permits.

11(C) MANDATORY CLOSURE

Mandatory closure of the CWDF has been triggered.

CEC, on behalf of BSIC, will begin closure activities in accordance with this Closure Plan within 7 days of the approval date of this Plan and complete closure activities no later than 365 days after closure has begun.

Final closure activities for unit(s) of a sanitary landfill facility will include, at a minimum, the items specified in sections 11(G) and (H) of this plan.

11(D) NOTIFICATION OF DATE TO CEASE ACCEPTANCE OF SOLID WASTE

The CWDF has ceased accepting solid waste.

CEC, on behalf of BSIC, will send a copy of the Closure Plan specified above to the following:

- District Board of Health Mahoning County
- Mahoning County Solid Waste Management District
- Ohio EPA Northeast District Office

11(E) NOTIFICATION OF ACTUAL DATE

The CWDF has ceased accepting solid waste.

11(F) FINAL CLOSURE ACTIVITIES

The CWDF will begin closure activities in accordance with this Closure Plan within 7 days of the approval date of this Plan and complete closure activities no later than 365 days after closure has begun.

11(G) COMPOSITE CAP SYSTEM CONSTRUCTION

The CWDF final cover system will be constructed in accordance with the approved PTI.

11(G)(1) Composite Cap System Design

The components of the permitted final cover system, from the top to bottom, are discussed below:

<u>Vegetative Cover Layer</u>: The thickness of this layer will be 30 inches and will consist of clean soil final coverable of supporting vegetation. The surface of the final cover protection layer will be fertilized, seeded and mulched as necessary to provide a dense vegetative cover.

<u>Geocomposite Drainage Layer</u>: This geosynthetic drainage layer will consist of a geotextile layer bonded to each side of a geonet. The geonet provides drainage of percolated water. The upper geotextile layer provides a filter to allow percolated water to enter the geonet and reduce the infiltration of soil from the overlying soil cover. The bottom layer of geotextile along the 3H:1V side slopes provides a cushion for the underlying FML and provides a frictional interface contact between the textured FML and geocomposite layer.

<u>Flexible Membrane Liner (FML)</u>: The FML reduces infiltration of water into the landfill. The FML will be a 40-mil thick LLDPE FML material, with textured surfaces to increase friction thereby increasing the stability of the final cover. The FML material and installation methods will meet the specifications in the CQA/QC Plan.

<u>Recompacted Soil Barrier (RSB)</u>: The thickness of this layer will be 18 inches and consist of soil with a permeability less than or equal to 1.0×10^{-6} cm/sec. The prequalification testing, material and installation methods will meet the requirements of the revised Attachment A of the CQA/QC Plan provided in Appendix C.

A 4.9 acre area of the partially constructed 2008 final cover system has exposed geosynthetics. Over a four year period since 2008, the temperature of the RSB was monitored for freezing temperatures. During the monitoring period, the top two lifts experienced temperatures below 32° F. However, the second lift experienced temperatures below 32° F for a time period significantly less than the time period the top lift experienced temperatures below 32° F. The exposed geosynthetics will be removed during the repair of the 2008 final cover system. CEC has collected six undisturbed samples of the existing RSB within the 4.9 acre area of exposed geosynthetics to determine the permeability of the existing RSB. The results of the permeability tests range from 4.6 x 10^{-6} cm/sec to 1.8×10^{-8} cm/sec, with only two of samples having a permeability less than the minimum required permeability of 1.0×10^{-6} cm/sec. Since these results indicate that the existing RSB generally meets the minimum required permeability of 1.0×10^{-6} cm/sec per OAC 3745-27-08 (21)(g)(iv), CEC proposes that only the top lift of the RSB requires repair and recompaction to the approved Best Fit Line of Optimums compaction criteria to meet the minimum permeability requirement. The permeability results are provided in Appendix D.

<u>Unlined Waste Area Closure</u>: In conjunction with the construction of the cell liner system for Phase 4 through 6B, an unlined waste area, permitted under PTI No. 02-880, within the permitted limits of waste was required to be relocated to the lined areas. At the completion of waste relocation activities for the Phase 5A, 5B and 6B liner construction, the southern edge of the unlined waste was temporarily covered with intermediate cover. The undisturbed portion of the unlined waste area was closed with a "1976 Cap" in accordance with Ohio EPA Guidance Document 0123.

CEC will verify that a minimum thickness of 2 feet of soil is present along southern edge of the unlined waste area. Test pits will be excavated on a 50 foot spacing to verify the thickness of the existing soil cover. If the test pits indicate that less than 2 feet of soil exists in an area, additional soil will be placed in accordance with the requirements of recompacted soil barrier.

11(G)(2) Composite Cap System per OAC 3745-27-09(B)(1) Effective June 1, 1994

Not applicable.

11(G)(3) Composite Cap System per OAC 3745-27-10(C)(1) or (C)(4) Effective July 29, 1976

Not applicable.

11(G)(4) Composite Cap System per OAC 3745-27-11(M) Effective June 1, 1994

Not applicable.

11(H) OTHER CLOSURE ACTIVITIES

11(H)(1) Compliance with Rule 3745-27-19

The CWDF will continue to comply with Rule 3745-27-19 until the closure certification is submitted and the post-closure care period begins.

The leachate management system incorporates leachate collection sumps that pump leachate through forcemain piping to the existing aboveground leachate storage tank. In 2012, the Phase 2B leachate collection sump riser broke at the elbow located approximately 70 feet below the surface. At that time, a pump was installed at the Phase 2B leachate collection pipe cleanout and lowered to the Phase 2B sump. A temporary forcemain pipe was installed from the Phase 2B leachate collection pipe cleanout to the leachate forcemain pipe near the Phase 2A leachate sump riser. This temporary system has been operating to maintain the required minimum 12-inch head of leachate on the liner. Since it is not feasible to repair the existing Phase 2B sump riser pipe, CEC proposes to upgrade the temporary system as a permanent system. The temporary forcemain will be revised from a single-contained forcemain pipe to a dual-contained forcemain pipe installed within the waste below the final cover system. The dual-contained forcemain pipe will provide protection during final cover construction and allow for leak detection at designated leak detection risers. Collected leachate will be disposed in accordance with applicable law.

11(H)(2) Surface Water and Erosion Control

The CWDF will have surface water control structures and erosion control measures as indicated in this Closure Plan. Surface water drainage control serves the purposes of:

- Reducing excess surface water run-off in operational areas;
- Directly removing run-off from the landfill to minimize leachate generation; and
- Providing controlled run-off from the landfill side slopes to reduce erosion.

The surface water management system is designed to minimize silting and scouring, and collect, route, and retain surface water run-on, run-off, and sediment discharge from the facility. The surface water management and erosion control systems consist of:

- Perimeter surface water channels;
- Drainage culverts;
- Sedimentation ponds;
- Permanent diversion berms;
- Temporary erosion controls; and
- Permanent seeding.

The permanent and temporary surface water control structures, excluding sedimentation ponds, were designed to convey the peak flow resulting from the 25-year/24-hour storm event by non-mechanical means. To reduce erosion, the channels are lined with grass and riprap aprons are constructed at the sedimentation basin discharge structure outlets. The sedimentation ponds and discharge structures have been constructed and are operating as designed. The drainage area for each sedimentation pond has not been increased so the design of the each sedimentation pond did not require any revisions.

The final cover system slope will be maintained to repair erosion rills and poorly vegetated areas. Erosion rills will be backfilled with soil and the area will be vegetated. Poorly vegetated areas

will be repaired with additional seed, fertilizer, and mulch. If needed, erosion control matting may be installed in erosion prone areas.

The north slope of the landfill, which is at interim waste grades, will be regraded to incorporate an access road, surface water bench and letdown structure.

The surface water channel north of the landfill limits will consist of a 2 foot deep by 20 foot wide "V" channel with 20 percent slopes. The surrounding area will be regraded at a minimum slope of two percent towards the channel. The surface water channel will discharge runoff from the northern portion of the CWDF to the north impoundment. This area currently discharges to the north impoundment.

11(H)(3) Groundwater Monitoring System

The groundwater monitoring system is described in the approved Groundwater Detection Monitoring Program.

A new monitoring well, MW-31D, will be installed north of Phase 5B as part of the Groundwater Detection Monitoring Program. MW-31D will be screened within the Middle Mercer Shale UAS. Due to the construction activities in this area associated with the closure construction, MW-31D will be installed after the closure construction activities are finalized. The location of MW-31D is located on Drawing 7 of the Closure Plan drawings provided in Appendix A.

11(H)(4) Vector Control

The final cover system will ensure that waste will not be exposed and become sources of food or harborage for insects and rodents. Additionally, drainage of surface water will be maintained to reduce potential mosquito breeding areas. In the event that a problem does arise with rodents or other vectors, a professional experienced in the removal of pests will be consulted to determine appropriate action.

11(H)(5) Verification of Notices

No later than 60 days, following the completion of final closure construction activities, CEC, on behalf of BSIC, will record on the plat and deed to the sanitary landfill facility, a notation describing the acreage, location, approximate depth, volume and nature of solid waste deposited within the proposed expansion. The plat and deed will be submitted to the following agencies:

- District Board of Health Mahoning County;
- Mahoning County Recorder of Deeds; and
- Ohio EPA Northeast District Office.

11(H)(6) Posting of Signs

Following closure of the CWDF, a sign with lettering at least 3 inches high, will be posted at the landfill entrance indicating that the landfill no longer accepts solid waste. This sign will be maintained in a legible condition at least two years after final closure activities of all phases have been completed.

11(H)(7) Unauthorized Access

Access control will be accomplished by a secure locking gate at the site entrances. The site entrance gate will be maintained as needed to remain functional during the post-closure care period. The Ohio EPA, Mahoning County Health Commissioner, and the Director, or their authorized representatives, upon proper identification, may enter the facility at any time for the purpose of determining compliance with OAC Chapter 3745 and ORC Chapter 3734 or other applicable laws.

11(I) COMPLETION OF FINAL CLOSURE ACTIVITIES

Closure activities will begin 7 days after the approval date of this Closure Plan and closure activities will be completed no later than 365 days after closure has begun.

11(J) FINAL CLOSURE CERTIFICATION

Not later than 90 days after the completion of final closure activities, CEC, on behalf of BSIC, will submit to the Ohio EPA Northeast District Office for concurrence and District Board of Health – Mahoning County, a written certification report including verification that the landfill has been closed in accordance with Rule 3745-27-11 and this Closure Plan.

11(J)(1) List of Construction Certification Reports

The Final Closure Certification will include a reference to the construction certification report for construction of the final cover system with submittal date, EPA concurrence date, and a topographic map of the entire landfill facility showing the areas certified by the report. The map will show limits of waste placement, surface water control structures, leachate collection system, and passive gas venting system.

11(J)(2) Groundwater Monitoring System

The Final Closure Certification will include a demonstration that the groundwater monitoring system meets the requirements of OAC 3745-27-10.

11(J)(3) Plat and Deed

The Final Closure Certification will include a copy of the plat and deed showing the notation required by Paragraph 11(H)(5) of this Closure Plan and bearing the mark of recordation of the office of Mahoning County.

11(J)(4) Posted Signs

The Final Closure Certification will include a demonstration that the sign required by Paragraph 11(H)(6) has been posted and that all entrances and access roads have been blocked as required by Paragraph 11(H)(7) of this Closure Plan.

11(K) ENTRANCE TO FACILITY

The Ohio EPA, Health Commissioner and the Director, or their authorized representatives, upon prior identification, may enter the facility at any time for the purpose of determining compliance with applicable law.

11(L) FINAL CLOSURE OF UNIT

Final closure of the facility will be completed in a manner that minimizes the need for further maintenance and minimizes post-closure formation and release of leachate and explosive gases to air, soil, groundwater, or surface water to the extent necessary to protect human health and the environment.

14(A) POST-CLOSURE ACTIVITIES

Post-closure activities will comply with Rule 3745-27-14. Upon completion of post-closure care, written certification will be submitted to the Ohio EPA Northeast District Office for concurrence.

14(A)(1) Continuing Operation and Maintenance of Landfill Systems

The post-closure activities include the continuing operation and maintenance of the following:

- Final cover system;
- Leachate management system;
- Surface water management system;
- Passive gas venting system;
- Groundwater monitoring; and
- Gas migration monitoring system.

These systems will be monitored as part of the regular quarterly inspection process throughout the post-closure care period.

<u>Final Cover System</u>: The final cover system will be inspected regularly and repaired as necessary. Corrective measures will be required if inspections reveal erosions, non-vegetated areas or damage. Repairs may include regrading, seeding non-vegetated areas, or replacement of final cover system components depending on the depth of any observed damage.

Leachate Management: The leachate management system consists of leachate collection trench inside the clay cut-off wall, cleanouts, sump and pump. Leachate generated within the landfill flows to leachate collection pipes which convey leachate to a sump. Leachate is pumped from the sump using a submersible pump. Leachate is then pumped through a force main to the aboveground leachate storage tank. The leachate is disposed in accordance with applicable law.

The pump will be inspected regularly and repaired as necessary. Cleanouts located along the perimeter of the landfill provide access to the perforated leachate collection pipe to allow for an annual inspection of the leachate collection pipe and removal of any sediment using high pressure water jet cleaning devices.

<u>Surface Water Management</u>: The surface water management system includes surface water control benches, downchutes, culverts, perimeter channels and sedimentation ponds. These drainage structures will be inspected in accordance with the Stormwater Pollution Prevention Plan and repaired as necessary. Corrective measures will be required if inspections reveal settlement, erosion, displacement of riprap, or silting of the system. Repairs may include regrading, physical repair of structure, replacement of riprap, or revegetation. During the post-closure period, accumulated silt will be removed from the sedimentation ponds on an as-needed basis.

Passive Gas Venting System: The passive gas venting system will be inspected quarterly. Any required maintenance will be performed as needed. Possible maintenance includes replacing or repairing damaged passive gas vents.

<u>Gas Migration Monitoring System</u>: Gas migration monitoring is completed quarterly for the initial 5 years of post-closure and semi-annual between 5 years post-closure and the Ohio EPA Director's authorization to cease monitoring. Monitoring is conducted at designated probes, punch bar and building alarm locations in accordance with the Explosive Gas Monitoring Plan.

<u>Groundwater Monitoring System</u>: Groundwater monitoring wells will be inspected at the time of groundwater sample collection for cracks in the concrete pad, frost heave, and damage or vandalism to the protective steel casing. Appropriate repairs will be performed as necessary. Protective steel casings will be repainted with a high visibility paint and well identification numbers will be marked as needed.

14(A)(2) Maintaining the Integrity and Effectiveness of the Final cover System

Areas displaying noticeable amounts of differential settlement may be excavated to determine the extent of potential problems. Remediation could include removing the final cover system in the area of the potential problem to determine if the final cover system is damaged. If necessary, the area will be reconstructed and soil will be used as backfill to raise the area to the top of waste grades. The final cover system will be rebuilt over the new fill. If no damage to the final cover system is observed, only the vegetative cover layer will be repaired, regraded and reseeded to promote run-off of surface water. Repairs will be performed as weather conditions allow.

Overgrowth of the vegetative cover will be controlled by mowing. Large wooded plants will be pulled from the site to prevent root penetrations into the drainage geocomposite. Any areas lacking vegetation will be reseeded, fertilized and mulched as needed to maintain adequate vegetative cover. Areas of the final cover that are eroded will be regraded to fill in erosion rills as weather permits. The area will then be seeded, fertilized and mulched.

14(A)(3) Leachate Outbreak Repair

Leachate outbreaks will be repaired by the following methods:

- Contain and properly manage the leachate;
- If necessary, collect, treat and dispose of the leachate; and
- Take action to minimize, control or eliminate the conditions which contribute to the production of leachate.

14(A)(4) Quarterly Inspection of the Sanitary Landfill Facility

The CWDF will be inspected on a quarterly basis. Within 15 days after inspection, a report will be submitted to the Ohio EPA Northeast District Office detailing the inspection results and the schedule of any actions to be taken to maintain compliance with Rule 3745-27-14 (A)(1) and (A)(2).

14(A)(5) Monitoring and Reporting Requirements

CWI will perform groundwater monitoring and reporting in accordance with the approved Groundwater Detection Monitoring Program and OAC 3745-27-10(D)(5) or as altered by (D)(6) during the post-closure care period.

CWI will perform explosive gas monitoring and reporting in accordance with the approved Explosive Gas Monitoring Plan. The reporting schedule for explosive gas migration monitoring will be quarterly between the time of closure and 5 years post-closure. Monitoring will be semi-annual between 5 years post-closure and the Ohio EPA Director's authorization to cease monitoring.

The CWDF will comply with OAC Chapter 3745-76 for landfill emissions and comply with any monitoring required by any orders or authorizing documents.

14(A)(6) Annual Report

An annual report will be submitted no later than the first day of April to the Ohio EPA Northeast District Office, District Board of Health – Mahoning County, and to the Operating Record. The annual report will contain the following information:

- A summary of the quantity of leachate collected for treatment and disposal on a monthly basis during the year, and the location of leachate treatment and/or disposal;
- Results of analytical testing of an annual grab sample of leachate for the parameters specified in Appendix I of OAC 3745-27-10. The grab sample will be collected from the leachate storage tank or other composite sample locations; and
- The most recent updated post-closure cost estimate adjusted for inflation and for any change in the post-closure cost estimate required by OAC 3745-27-16.

14(A)(7) Reports and Record Keeping

Records and reports generated by OAC 3745-27-14 (A)(4) and (A)(6) will be kept for the duration of the post-closure period in the operating record where the records and reports are available for inspection by the Ohio EPA or District Board of Health – Mahoning County during normal working hours.

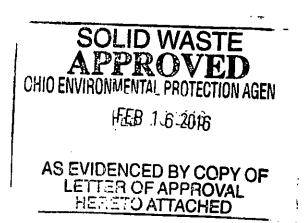
14(B) WRITTEN CERTIFICATION

Upon completion of the post-closure period, CWDF will submit to the Ohio EPA written certification that the facility has completed post-closure activities in accordance with Rule 3745-27-14 and this Closure Plan. The report will be prepared and signed by an independent, professional engineer registered in the State of Ohio. The certification will include documentation which demonstrates that all post-closure care activities have been completed. The documentation will include the following:

- A summary of changes to leachate quality and quantity;
- Rate of leachate generation and depth of leachate at each leachate sump, with an explanation of how the figures were derived;
- A summary of any on-going groundwater assessment or corrective measures;
- A summary of explosive gas migration and generation by the landfill; and
- An assessment of the integrity and stability of the final cover system if post-closure care activities cease.

14(C) COMPLETION OF GROUNDWATER DETECTION MONITORING IN NON-CONTIGUOUS UNITS

The CWDF is one contiguous unit. Refer to the Groundwater Detection Monitoring Program.

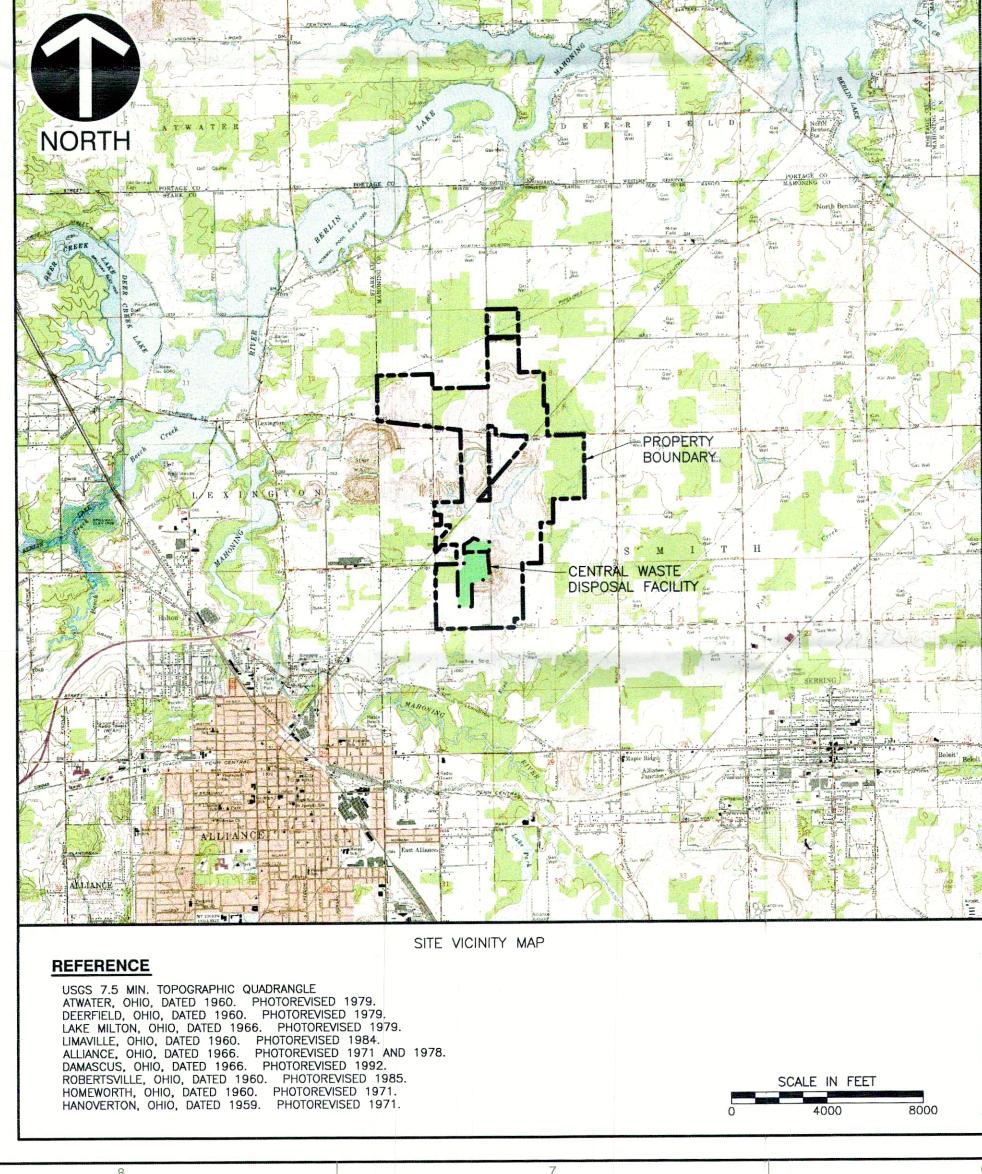

14(D) ENTRANCE TO FACILITY

The Ohio EPA, Health Commissioner and the Director, or their authorized representatives, upon prior identification, may enter any unit(s) of the sanitary landfill facility at any time during the post-closure period for the purpose of determining compliance with applicable law.

APPENDIX A

CLOSURE PLAN DRAWINGS

.



APPENDIX A

CLOSURE PLAN DRAWING LIST

DRAWING NO.	DRAWING TITLE
1	Title Sheet
2	Existing Conditions
3	Permitted Top of Waste Grades
4	Waste Regrading Plan
5	Waste Regrading Isopach
6	Final Cover Plan
7	Passive Gas Vent and Surface Water Control System Plan
8	Final Cover System Details
9	Passive Gas Vent and Surface Water Control System Details

CLOSURE PLAN CENTRAL WASTE DISPOSAL FACILITY SMITH TOWNSHIP, MAHONING COUNTY, OHIO

5/153-121/-CADD/Dwg/SW02 - CLOSURE PLAN/153121-SW02-006-TTLE SHEET.dwgfTTLE SHEET} LS(10/27/2015 - miapalucci) - LP: 10/27/2015 8:34 PM

6

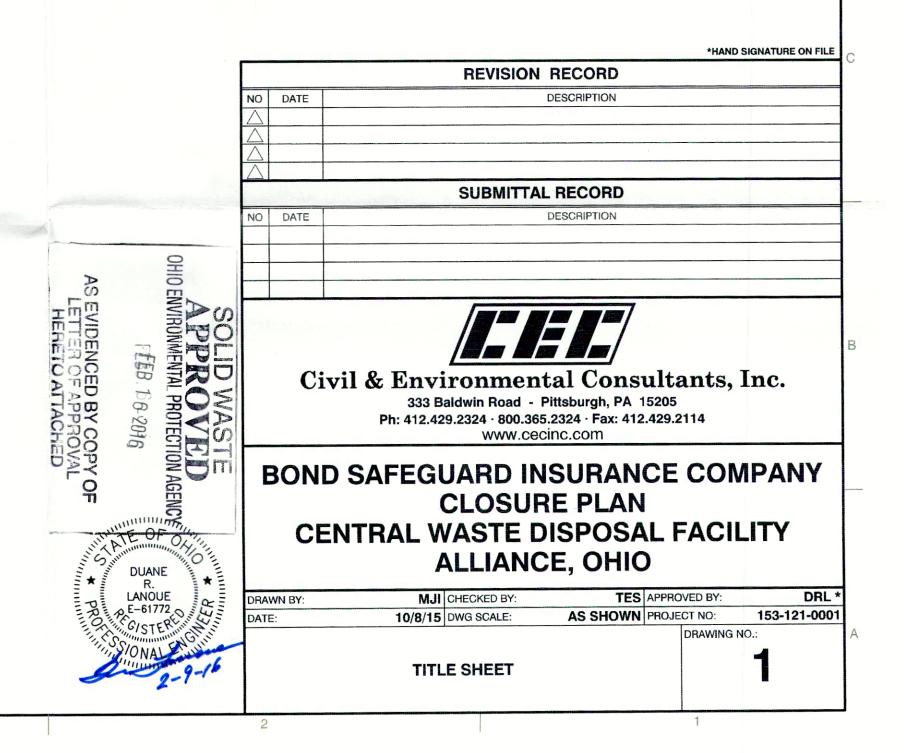
PREPARED FOR:

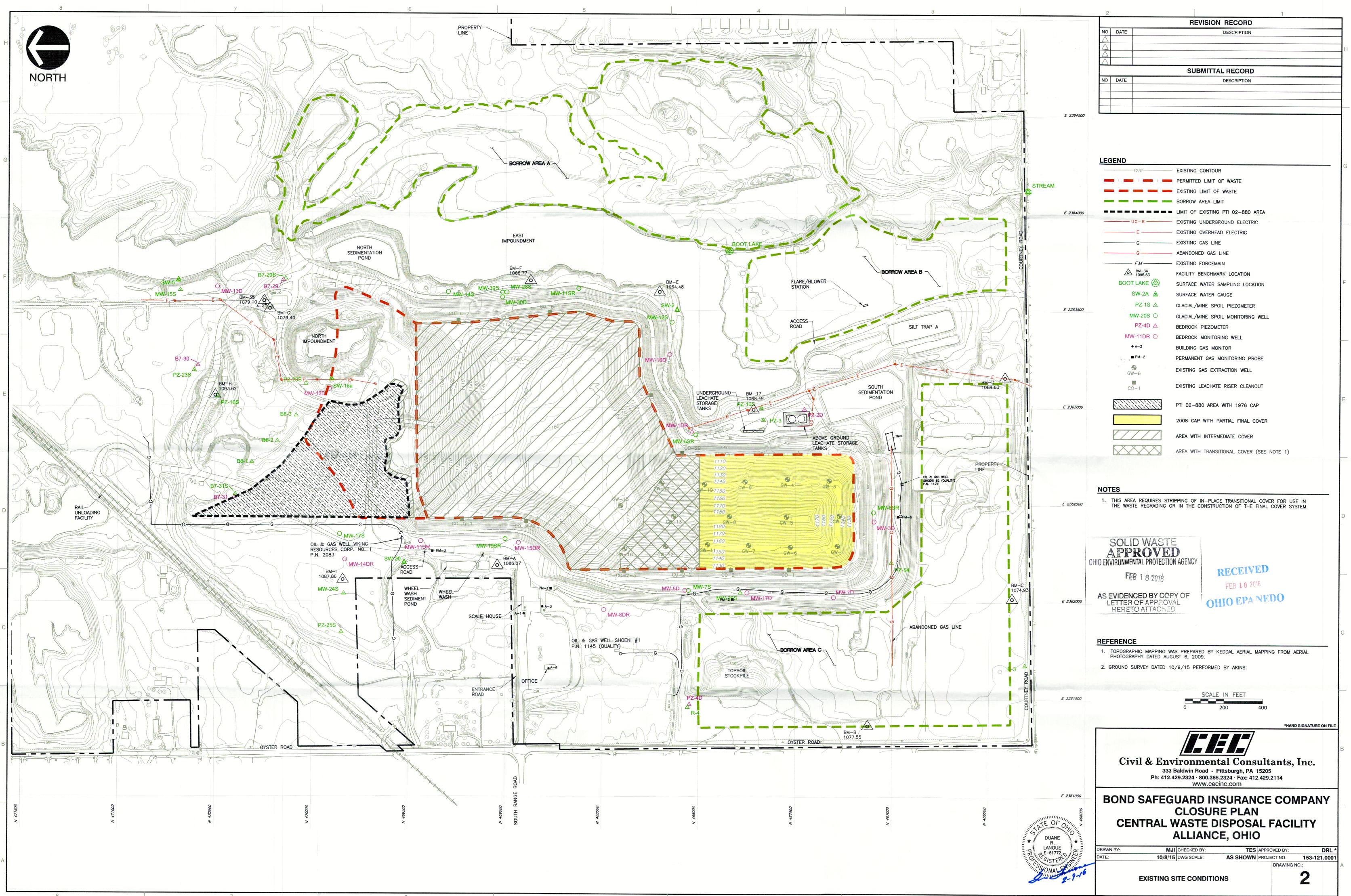
BOND SAFEGUARD INSURANCE COMPANY 900 S. FRONTAGE ROAD SUITE 250 WOODRIDGE, IL 60517

PREPARED BY:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 333 BALDWIN ROAD PITTSBURGH, PA. 15205 (412) 429-2324 (800) 365-2324

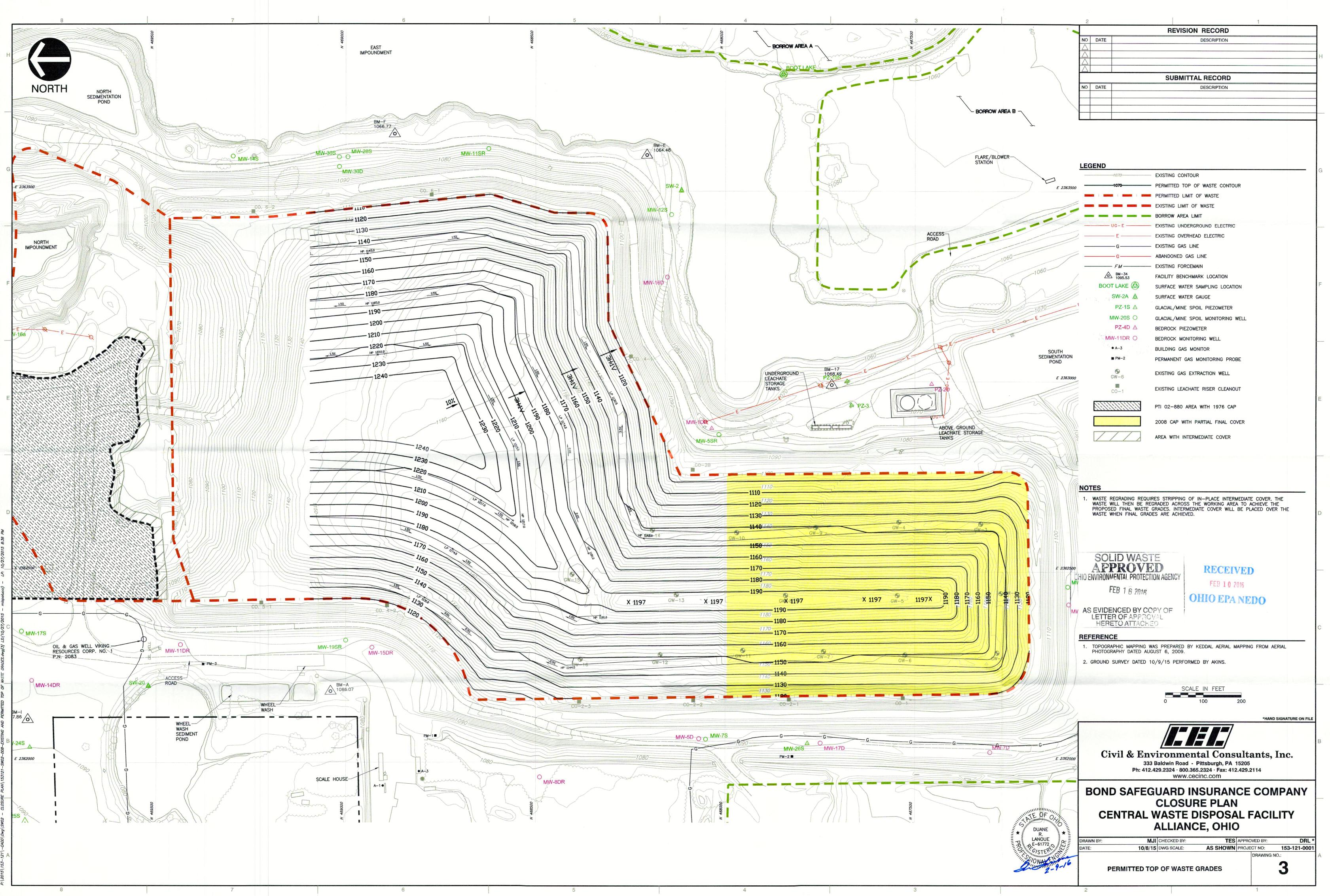
CEC PROJECT 153-121.0001

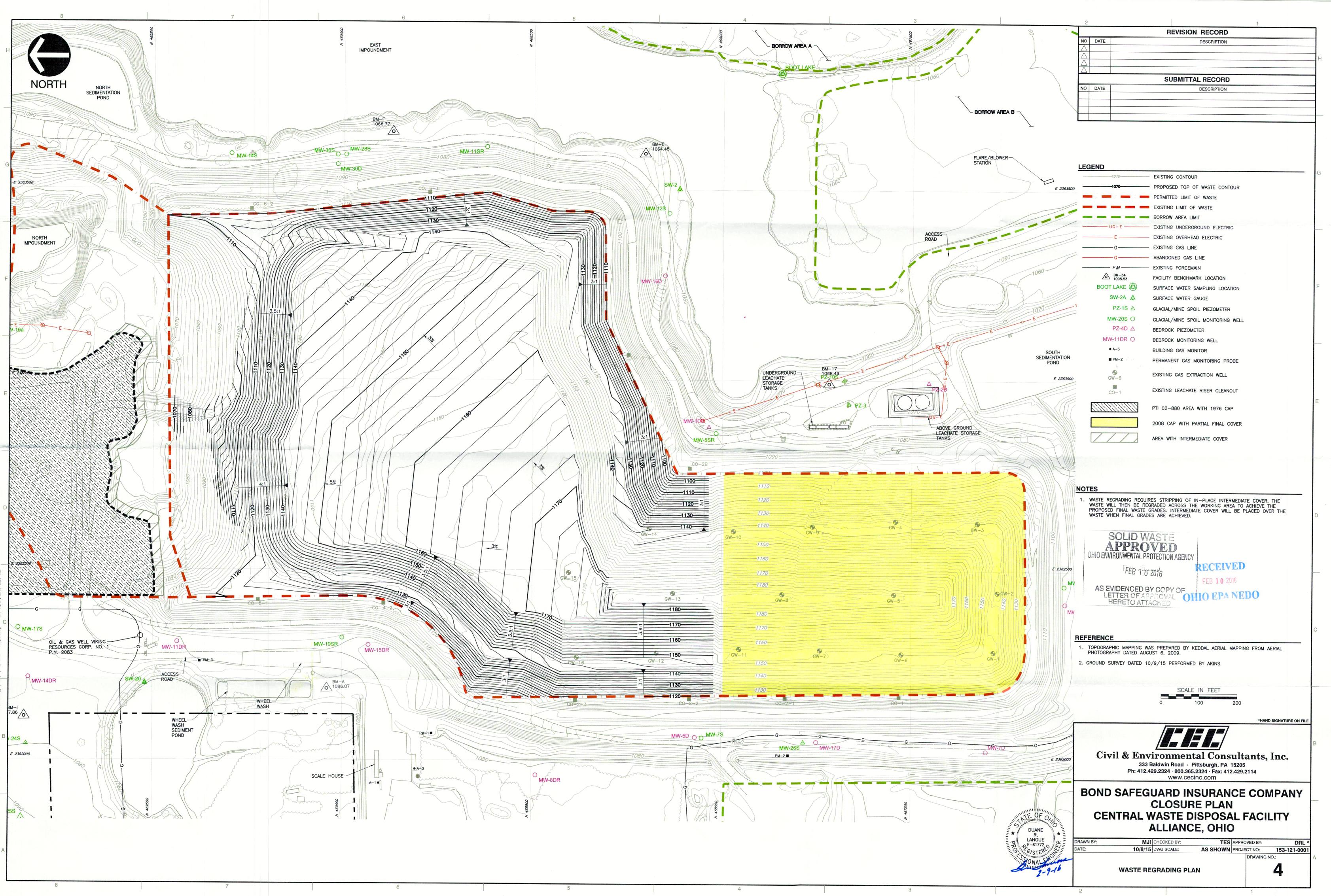

OCTOBER 2015

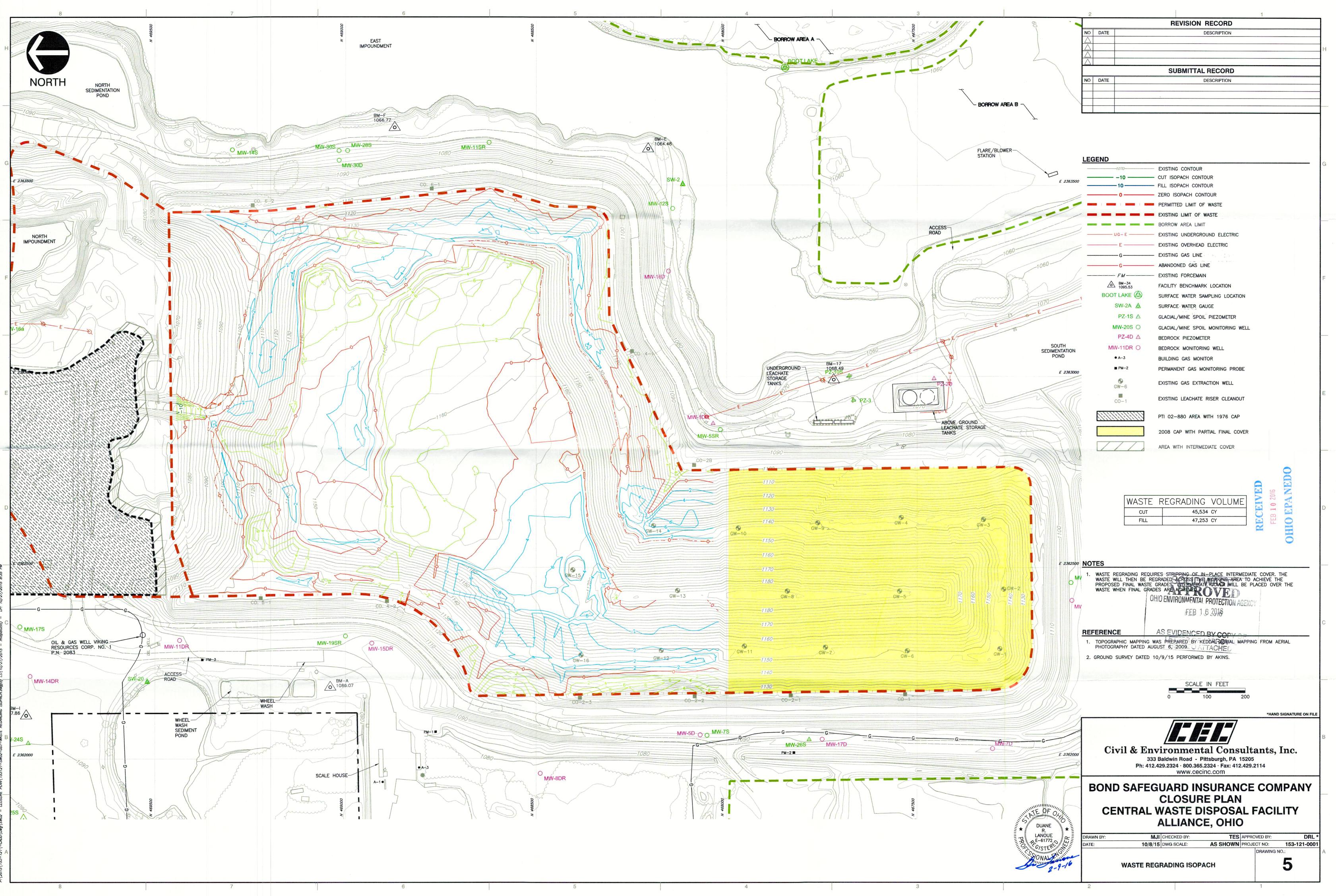

DRAWING NO.	DRAWING TITLE	REV NO.
1	TITLE SHEET	0
2	EXISTING SITE CONDITIONS	0
3	PERMITTED TOP OF WASTE GRADES	0
4	WASTE REGRADING PLAN	0
5	WASTE REGRADING ISOPACH	0
6	FINAL COVER PLAN	0
7	PASSIVE GAS VENT AND SURFACE WATER CONTROL SYSTEM PLAN	0
8	FINAL COVER SYSTEM DETAILS	0
9	PASSIVE GAS VENT AND SURFACE WATER CONTROL SYSTEM DETAILS	0

RECEIVED

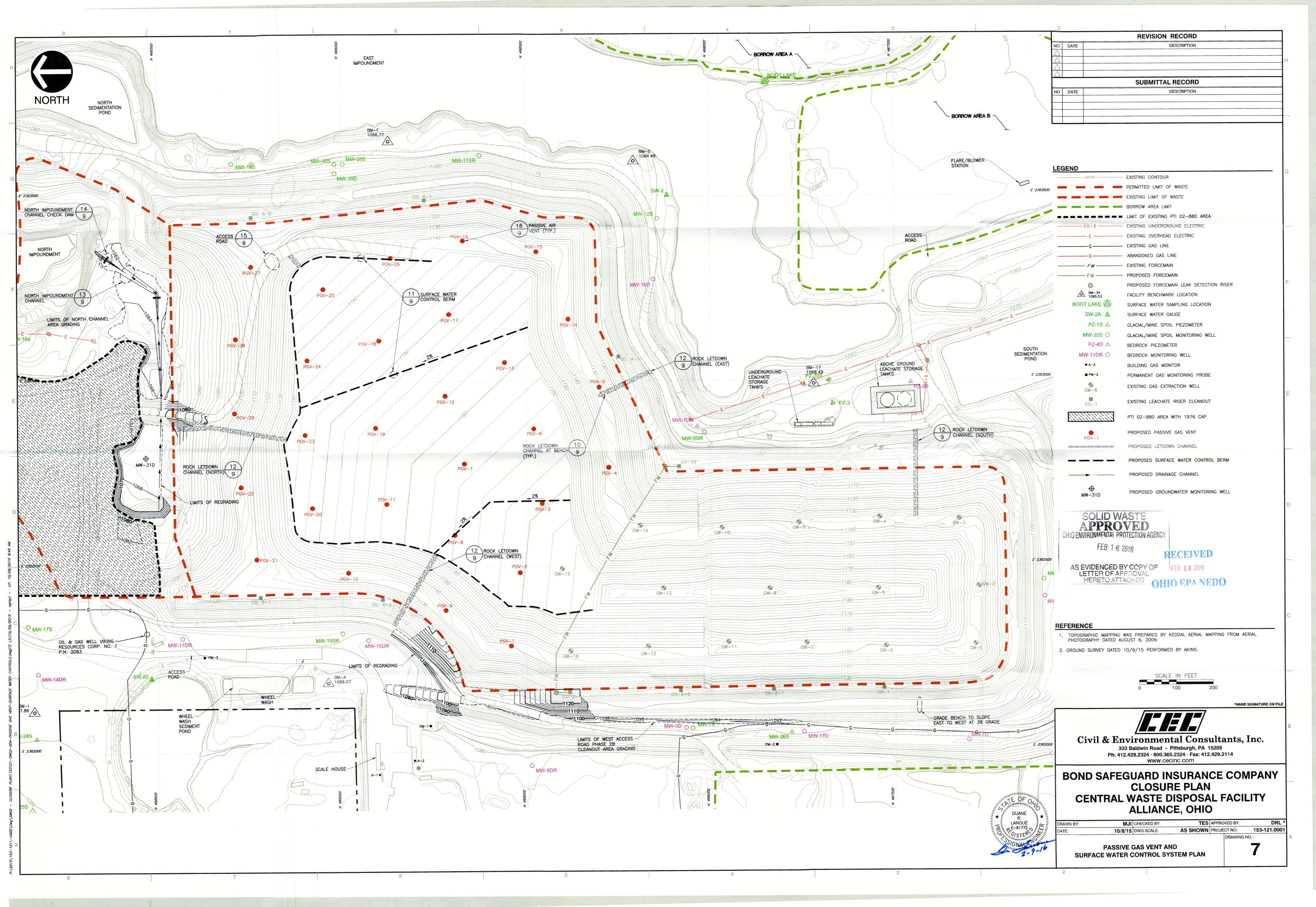
FEB 10 2016

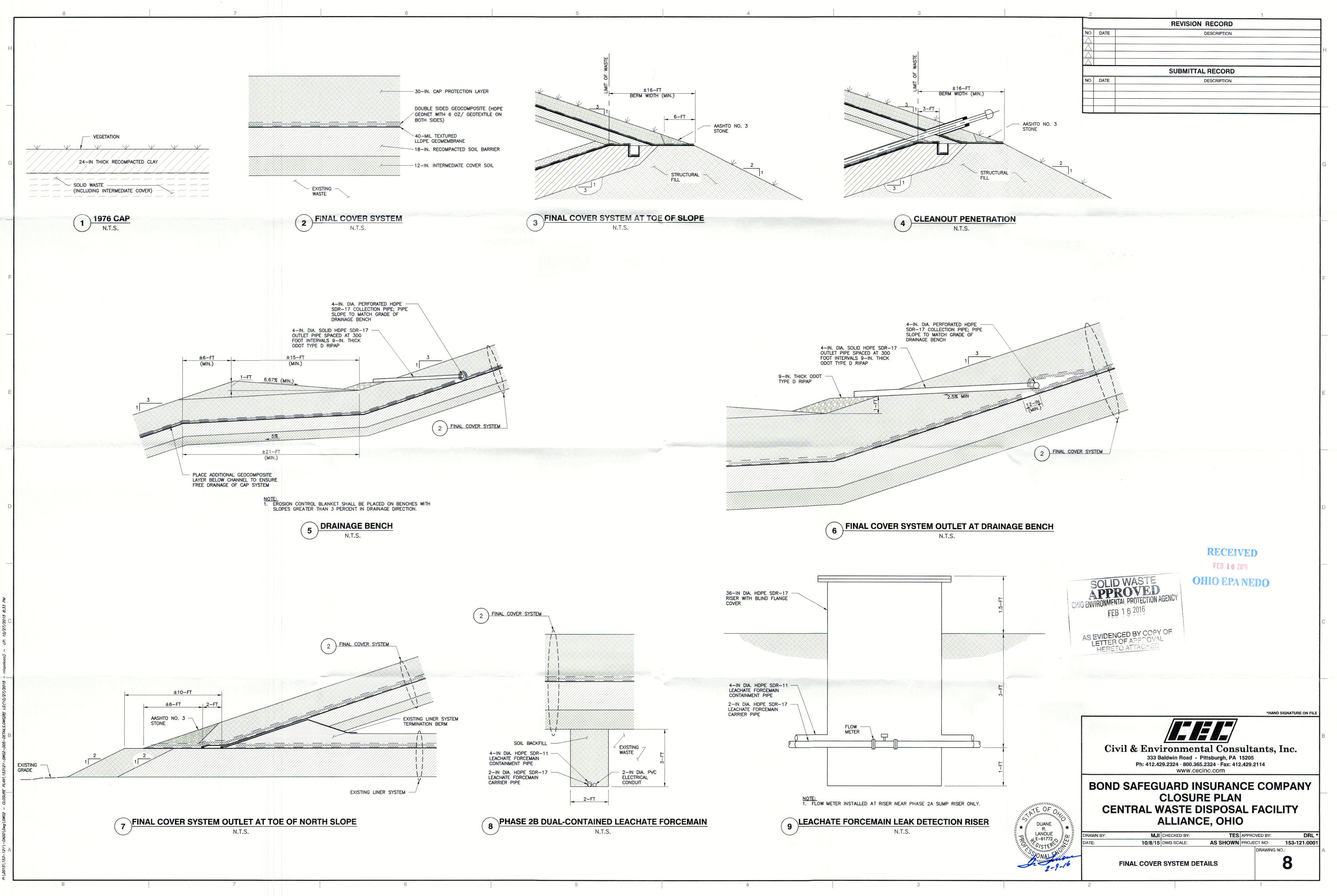

OHIO EPA NEDO

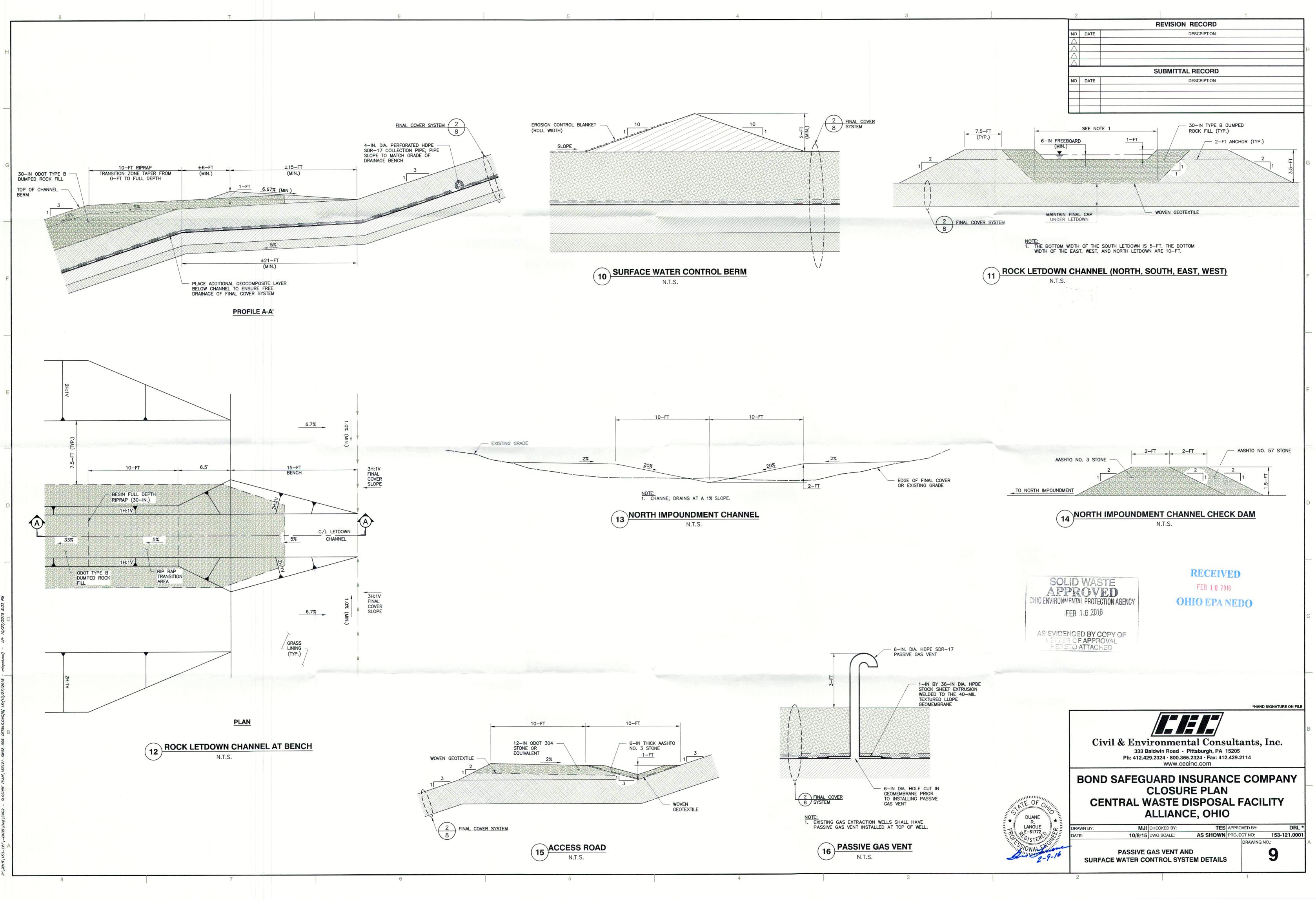



3

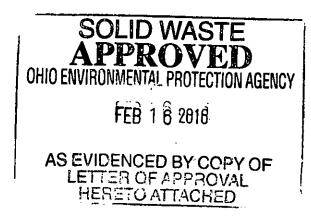
-1




?\2015\153-121\-CADD\Dwg\SW02 - CLOSURE PLAN\153121-SW02-D02-WASTE REGRADING PLAN.dwgf4f LS(10/27/2015 - miapalucci) - LP: 10/27/201



15/153-121/-CADD/Dwg/SW02 - CLOSURE PLAN/153121-SW02-007-WASTE REGRADING ISOPACH.dwgf5f LS:(10/27/2015 - miapalucci) - LP: 10/2;



APPENDIX B

2008 FINAL COVER STABILITY ANALYSIS

			Civil &	Environmer	ntal Consult	ants, Inc.				
PROJECT	2008 FI	NAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	ст	153	-121
DETERM		OF INTE	RFACE ST	RENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE	1	OF	17
CENTR	AL WAS		OSAL FA	CILITY			-			
MADE	вү	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	30/15	
							-			

OBJECTIVE

Determine the factor of safety for the 2008 final cover system based on existing interface shear strength and geocomposite transmissivity test results. These calculations also consider the existing maximum 3.4H:1V slopes with benches spaced at approximately 30 foot vertical interval, which equates to slope length of 100 feet between drainage bench centerlines.

Spreadsheet and slope stability software methods were utilized to complete the analyses. The table below presents the scenarios evaluated and the required factors of safety:

Translational or Rotational	Static or Seismic	Drained or Undrained	OAC Rule 3745-27-08	Minimum Factor of Safety	Method of Calculation
Translational	Static	Drained	(C)(7)(c)(ii)	1.50	Software & Spreadsheet*
Translational	Seismic	Drained	(C)(7)(d)(ii)	1.0	Software & Spreadsheet*
Translational	Static	Undrained	(C)(7)(f)(ii)	1.1	Software & Spreadsheet*
Rotational	Static	Drained	(C)(7)(c)(ii)	1.5 results	' Software
Rotational	Seismic	Drained	(C)(7)(d)(ii)	1.0	Software
Rotational	Static	Undrained	(C)(7)(f)(ii)	1.1	Software

* Software calculations were performed to analyze the 3.4H:1V slopes including the benches; spreadsheet calculations were performed to analyze the 3.4H:1V slopes between the benches.

METHODOLOGY

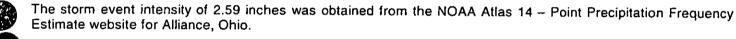
Multiple reference methods were utilized within this analysis and are described below.

"Cover Soil Slope Stability Involving Geosynthetic Interfaces", (GRI REPORT #18), by Te-Yang Soong and Robert M. Koerner, December 9, 1996, Geosynthetic Research Institute (GRI), Drexel University.

This reference was utilized to compute the factors of safety for the static and seismic drained translational analyses for the sloped areas between the benches. It considers the presence of equipment on top of the cover layer and provides a FS based on the most critical interface shear strength of final cover system components. The spreadsheet calculates a FS by dividing the cover material along the 3.4H:1V slope into active and passive blocks. Then interwedge force equations are set equal to each other and are arranged in the form of a quadratic equation that can be solved to calculate a FS.

The seismic coefficient used within the stability analysis was obtained from Figures 9-8 and 8-11 of the "Geotechnical and Stability Analyses for Ohio Waste Containment Facilities" September 14, 2004, which are included below.

"Design of Drainage Systems Over Geosynthetically Lined Slopes" (GRI Report # 19) by Te-Yang Soong and Robert M. Koerner, June 17, 1997, Geosynthetic Research Institute (GRI), Drexel University.



			Civil &	Environme	ntal Consult	ants, Inc.				
PROJECT	2008	FINAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJECT	г	153-	121
DETERM	AINATIO	ON OF INTE	RFACE ST	RENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE	2	OF	17
CENTR		STE DISP	OSAL FA	CILITY					-	
MADE	E BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/30	/15	
				•						

The analytical method presented in this reference is used to determine the head within the final cover system based on the existing transmissivity of the final cover geocomposite. The method analyzes the ability of the drainage geocomposite to adequately transmit the infiltrating rain flow impact of a specified rainfall event upon the drainage capability of the proposed final cover material and the subsequent slope stability FS. GRI Report #19 discusses in detail the design of drainage systems incorporating the effects of seepage forces upon slope stability. Exceeding the drainage capacity of the final cover geocomposite could potentially cause the final cover material to become saturated and possibly unstable. A spreadsheet was utilized to calculate the static undrained translational analysis of the 3.4H:1V slopes between the benches of the final cover system.

This calculation method is used to determine the head within the final cover system based on the existing transmissivity of the final cover geocomposite and the design strom event. For the design storm event, a factor of safety of 2 was applied to the 100 year, 1 hour storm event intensity (conservative). The reduction factors to the geocomposite transmissivity were applied as suggested within GRI Standard – GC8, and *Designing with Geosynthetics*.

GRI Standard – GC8, Determination of the Allowable Flow Rate of a Drainage Geocomposite

This paper presents the methodology for application of reduction factors in the specification of required transmissivity of a geocomposite.

Slide 6.0, by Interactive Roc Science

This computer software program was utilized in the preparation of the translational and rotational analyses of the static and seismic drained cases for the 3.4H:1V slopes including the benches of the final cover system. The program uses limit equilibrium techniques to determine a FS for each given input cross-section and corresponding data file. SLIDE will calculate FS for both rotational and translational failure surfaces within each cross-section in terms of both static and seismic conditions based upon slope geometry, water surfaces, the shear strength parameters of materials, and the most critical contact interface within the proposed final cover system. The software utilizes a CAD based graphical interface and was utilized to calculate the factor of safety based on Spencer's Method.

PROPOSED FINAL COVER SYSTEM

The proposed final cover system is outlined below, from top to bottom:

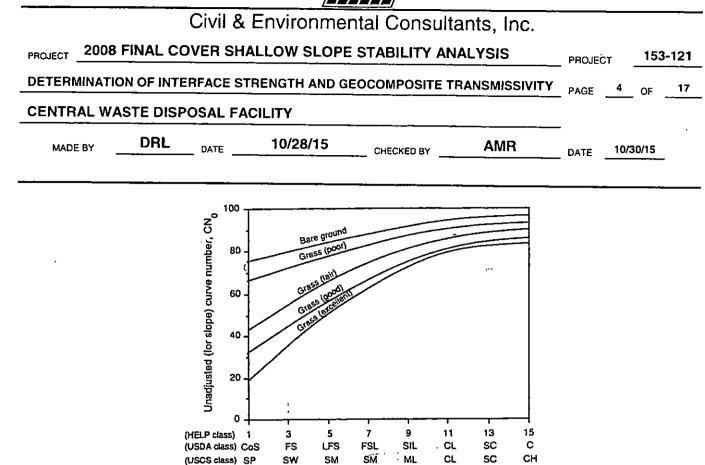
- 30-inch thick Vegetative/Frost Protection Layer;
- Double Sided Drainage Geocomposite;
- 40-mil textured FML;
- 18-inch thick Recompacted Soil Barrier (RSB); and
- 12-inch thick Intermediate Cover Layer.

		Civil &	Environmer	ntal Consult	ants, Inc.			
PROJECT	FINAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJECT	153	-121
DETERMINATI	ON OF INTE	RFACE ST	RENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE 3	OF	17
CENTRAL W	ASTE DISP	OSAL FA	CILITY				-	
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	- DATE 10)/30/15	
				_			-	•

COVER MATERIAL PARAMETERS

The final cover system was analyzed for translational and rotational failure surfaces under static drained and undrained conditions and seismic drained conditions using SLIDE 6.0. This analysis was performed using the existing soil and geosynthetics shear strengths for the final cover system to determine if the factors of safety exceed 1.5 for static drained conditions, 1.1 for static undrained conditions and 1.0 for seismic drained conditions in accordance with OAC 3745-27-08(C)(7)(c), (d) & (f). The 2008 final cover system consists of maximum 3.4H:1V final slopes with benches constructed with a vertical spacing of 30 feet. Based on the results of laboratory testing, the final cover system was assigned the following material properties for the slope stability analysis:

Exisitng direct shear strength test results for the clay material used for both the recompacted soil barrier and vegetative cover soil is provided in attachment A. Existing QC and QA transmissivity test results for the geocomposite is provided in Attachment B. The existing interface test results for the final cover system are provided in Attachment C. The interface test results are from the initial tests using representative samples of the soils and geosynthetics materials and from archive samples collected from the existing geocomposite and geomembrane materials.

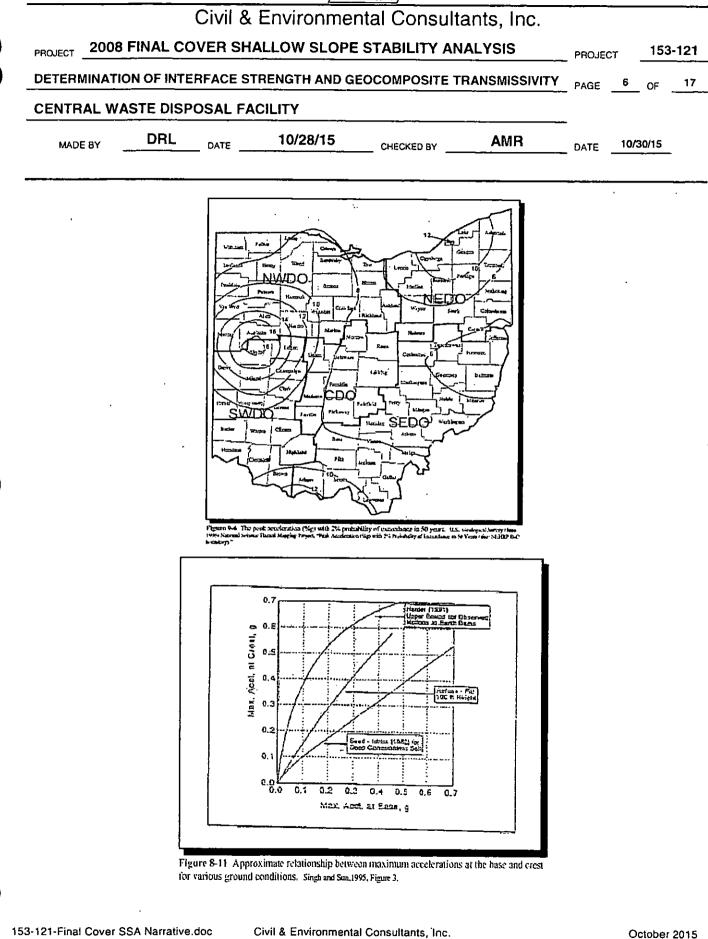

Cap Protection Soils

Unit weight of the cap protection layer material: $\gamma_t = 130 \text{ pcf}$ Cohesion: c = 893 psf Internal Friction Angle: ϕ = 25 degrees Permeability: k = 1.0 x 10⁻⁴ cm/sec Thickness = 2.5 feet.

The analysis assumes that clay soils will be used for the cover system soil with a fair grass cover. Based on testing of soils at the site, it is assumed that soil with a USCS classification of CL will be used. Based on Figure A-3 of GRI Report #19, below, this results in the SCS curve number of 79, which is used in the analysis.

Soil texture number

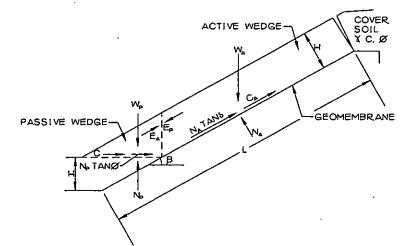
2008	B FINAL CO		LLOW SLOPE		ants, Inc.			150	-
						PROJEC	CT .	153	-1
DETERMINAT	ION OF INTE	RFACE STR	RENGTH AND GEO	DCOMPOSITE T	RANSMISSIVITY	PAGE	5	OF	
CENTRAL W	ASTE DISP	OSAL FAC				_			
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	0/15	
eosynthetic Ma	terial Shear		arameters	<u> </u>					
nit weight of the	e geosynthe								
ohesion: $c = 0$		~	•						
ternal Friction / hickness = 0.5 f		7.5 degrees			·				
ecompacted Sc	<u>il Barrier (P</u>	<u>(SB) Shear</u>	Strength Parame	<u>ters</u>					
nit weight of the ohesion: c = 89	e barrier soi	I material:	γ _t = 130 pcf						
ernal Friction Ar		enrees							
nickness = 1.5 f		egrees	•						
	0.11.01	.	-						
	er Soll She								
termediate Cov		to coil moto	vrint v – 190 naf						
nit weight of the	e intermedia	ite soil mate	erial: γ _t = 130 pcf						
hit weight of the phesion: c = 0 p ernal Friction Ar	e intermedia osf ngle: φ= 27 d		erial: γ _t = 130 pcf						
nit weight of the phesion: c = 0 p	e intermedia osf ngle: φ= 27 d		erial: γ _t = 130 pcf						
hit weight of the bhesion: c = 0 p ernal Friction Ar hickness = 1.0 f	e intermedia osf ngle: φ= 27 d leet.	egrees							
hit weight of the bhesion: c = 0 p ernal Friction Ar nickness = 1.0 f unicipal Solid M nit weight of the	e intermedia osf ngle: φ= 27 d leet. <u>Vaste Shear</u> e solid waste	egrees <u>r Strength P</u>	arameters						
hit weight of the bhesion: c = 0 p ernal Friction Ar hickness = 1.0 f	e intermedia osf ngle: φ= 27 d feet. <u>Vaste Shear</u> e solid waste 0 psf	egrees <u>r Strength P</u> e material: -	arameters						


The shear strength properties of MSW are conservative when compared to the maximum recommendation in Chapter 8 of the *Geotechnical and Stability Analyses for Ohio Waste Containment Facilities* manual published by the Ohio EPA Geotechnical Resource Group, dated September, 14, 2004 (GeoRG Manual).

SEISMIC COEFFICIENT

The shear wave acceleration is modeled within the stability analysis by inputting a coefficient, (Cs) that is some fraction of gravity. The peak acceleration for the site is estimated to be 0.08 g which is taken from the "Peak Acceleration (%g) with 2% Probability of Exceedance in 50 Years (site: NEHRP B-C boundary)" published by the U.S.G.S in June of 1996 shown below. When plotting this value onto Singh and Sun's 1995 figure below for the relationship between maximum horizontal seismic acceleration at the base and crest of 100 feet of refuse, the maximum horizontal seismic acceleration at the crest of the landfill can be expected to be 0.12g. Since this analysis is for the final cover system, the acceleration at the crest of the landfill will be considered.

4

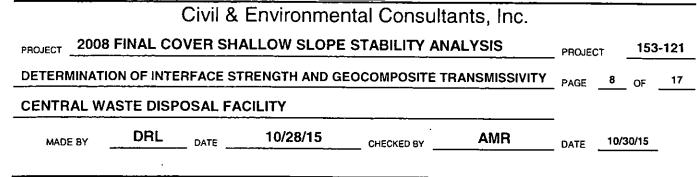

			Civil &	Environmer	ntal Consult	ants, Inc.				
PROJECT	2008 F	INAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	т	153	-121
DETERM			RFACE ST	RENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE	7	OF	17
CENTR	AL WAS	TE DISP	OSAL FA	CILITY			-		·	-
MADE	Е ВҮ	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	30/15	•

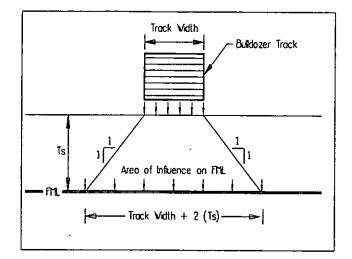
SPREADSHEET CALCULATIONS

The spreadsheet based calculations are described in more detail below.

Static and Seismic Drained Translational Analysis

The figure below illustrates the free body diagram upon which the calculations are based.


The GRI Report #18 and #19 veneer slope stability calculations are prepared proposing the following assumptions:


- The presence of equipment along the 3.4H:1V cover sideslope is analyzed within GRI Report #18.
- The shear strength component of adhesion developed between geosynthetic material layers is ignored.
- Tensile strength of the geosynthetic materials contributing to the veneer slope stability FS is ignored.
- The cover material provides a buttress at the toe of the slope, i.e. the passive soil wedge.
- Weights of the geosynthetic components are negligible compared to the weight of cover material and therefore are not considered in the calculations.
- The effect of seepage forces upon the veneer stability of the final cover material layer, generated by a storm event, is evaluated in GRI Report # 19
- Cohesion within the final cover soil is based on laboratory test results.
- All calculations will utilize a 1-foot unit width of sideslope.

A Low Ground Pressure (LGP) bulldozer will be used to place cover material up the sideslope. The presence of equipment was only modeled in the static analysis. The pressure exerted upon the top of the geosynthetic layers by a bulldozer is modeled as illustrated below.

Stress Distribution of the LGP Bull Dozer upon the Geosynthetic Layers

The following typical LGP Bulldozer equipment specifications are used within the GRI Report #18.

- 2 tracks
- Track length = 9.4 feet
- Track width = 3.0 feet
- Operating weight = 38,300 lbs
- One Track Contact area = 28.2 ft²
- One Track Contact pressure = 19,150 lbs / 28.2 ft² = 679.1 psf

Subsequently, the forces are resolved below to produce a veneer slope stability FS. The equations are shown on pages 13 and 14 of GRI Report #18 and for ease of calculations are incorporated into a spreadsheet to produce a FS corresponding to a given set of input parameters. A copy of the spreadsheet calculations displaying the results is included in Attachment A.

Static Undrained Translational Analysis

The effect of seepage forces upon the veneer stability of the final cover material layer, generated by a storm event, is evaluated using the methodologies outlined in GRI Report # 19. This calculation method is used to determine the head within the final cover system based on the existing transmissivity of the final cover geocomposite and the design strom event. For the design storm event, a factor of safety of 2 was applied to the 100 year, 1 hour storm event intensity (conservative).

An important input parameter within the GRI Report #19 spreadsheet calculation that impacts slope stability is the "runoff coefficient", RC. The RC estimates the amount of precipitation that drains off the final cover

		Civil &	Environme	ntal Consulta	ants, Inc.			
PROJECT 2008	FINAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	т <u>153</u>	-121
DETERMINATI	ON OF INTE	RFACE ST	RENGTH AND G	EOCOMPOSITE TI	RANSMISSIVITY	PAGE	9 OF	17
CENTRAL W	ASTE DISP	OSAL FA	CILITY			_		
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/30/15	
					· · · · · · · · · · · · · · · · · · ·			•

sideslope as surface water runoff, thereby not infiltrating, saturating and reducing the shear strength of the final cover material.

Calculating the RC (as a function of time) consists of determining a Soil Conservation Service (SCS) curve number using the proposed length and orientation of the final cover slope and the magnitude of a given storm event. Subsequent equations are then used to determine "potential retention" and "accumulated precipitation" values, which are then input into an equation to calculate a RC. Appendix A presents the analysis used to calculate the RC.

GRI Report #19 includes a spreadsheet calculation that considers the affects of rainfall and drainage layer capacity parameters upon a given slope stability condition. The GRI Report #19 spreadsheet is a modified version of the slope stability spreadsheet calculation presented within GRI Report #18. The following rainfall and drainage layer data was input within the GRI Report #19 spreadsheet calculation:

- The peak 100-year, 1-hour storm event corresponds to a rainfall amount of 2.59 inches/hour. Applying a
 factor of safety of 2.0 to the rainfall intensity results in a rainfall amount of 5.18 inches/hour;
- A final cover material permeability of k_{c.s.} = 1.0 x 10⁻⁴ cm/sec;
- A final cover material thickness of h_{c.s.} = 30-inches
- A geocomposite thickness of h_d = 250 mils = 6.35 mm; and
- A long term geocomposite transmissivity of $\theta_{tt} = 1.16 \times 10^{-4} \text{ m}^2/\text{sec.}$

In this analysis, the permeability of the drainage layer (k_d) is a function of the transmissivity and thickness of the geocomposite determined through the following equation:

 $K_d = \theta_{lt} / h_d$

Where h_d equals the thickness of the geocomposite.

Therefore the permeability of the geocomposite equals:

 $K_d = (1.16 * 10^{-4} m^2/sec) / [6.35 mm / (1000 mm/m)] = 0.01825 m/sec = 1.825 cm/sec.$

The GRI Report # 18 and 19 calculation spreadsheets are provided in Attachment A.

Geocomposite Transmissivity Calculation

To account for the reduction in transmissivity over the long term, reduction factors were applied to the installed geocomposite transmissivity based on *GRI Standard – GC8, "Determination of the Allowable Flow Rate of a Drainage Geocomposite".* The Reduction factors for the flow capacity of geocomposites having a geonet core used in landfill cover drainage layer applications are listed below.

		Civil &	Environme	ntal Consult	ants. Inc.	·			
PROJECT 2	008 FINAL CO			STABILITY AN		PROJEC	т	153	-121
DETERMIN		RFACE S	TRENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE	10	OF	17
CENTRAL	WASTE DISP	OSAL FA	CILITY			-			
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	0/15	

 θ_{ult} = θ_{lt} * (RF_IN * RF_CR * RF_CC * RF_BC) Where :

 RF_{IN} = Reduction Factor for geotextile intrusion (1.0 to 1.2); RF_{CR} = Reduction Factor for creep deformation (1.2 to 1.4); RF_{CC} = Reduction Factor for chemical clogging (1.0 to 1.2); and RF_{BC} = Reduction Factor for biological clogging (1.2 to 3.5).

Since the laboratory testing was performed using site-specific boundary conditions, the reduction factor for intrusion of the geotextile into the geonet was ignored (RF_{IN} =1.0).

Reduction factors for creep deformation, $RF_{CR} = 1.4$, biological clogging, $RF_{BC} = 2.8$, and chemical clogging $RF_{CC} = 1.1$ were utilized. The resulting ultimate transmissivity (θ_{ult}) is calculated as shown below.

 $\theta_{vlt} = 1.16 * 10^{-4} \text{ m}^2/\text{sec x} (1.0 * 1.4 * 1.1 * 2.8) = 5.00 \text{ x} 10^{-4} \text{ m}^2/\text{sec}$

SOFTWARE CALCULATIONS

Static and Seismic Drained Rotational Analyses and Static Undrained Rotational Analysis

As stated above, these analyses were completed using a software package called Slide 6.0. The input values utilized in the Slide analyses are the same as the values utilized in the spreadsheet calculations. For the undrained analyses, a head of 0.1 meters (0.33 feet) was assumed, which is conservative since the maximum head above the liner (h_{avh}) determined in the GRI Report # 19 calculation spreadsheet was 0.01 meters. For the translational undrained analysis, the software was permitted to search for the most critical failure surface within both the cap protection soils and the geosynthetics.

A summary of these calculations are provided in the conclusion section of this document. Output files from the software analyses are included in Attachment B.

		Civil &	Environmer	ntal Consulta	ants, Inc.				
PROJECT 2008	FINAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	т.	153-	121
DETERMINAT	RANSMISSIVITY	PAGE	11	OF	17				
CENTRAL W	ASTE DISP	OSAL FA	CILITY			-		-	
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/30)/15	

CONCLUSIONS

The following table presents a summary of the calculated factors of safety for the various analyses performed for the final cover system. As shown, all calculated factors of safety meet the requirements of OAC 3745-27-08(C)(7). The spreadsheet outputs for these analyses are provided in Attachment D, and the software outputs for these analyses are provided in Attachment E.

		EXISTING UI	NIT FACTOR	OF SAFETY SUMMAR	Y	
Translational or Rotational	Static or Seismic	Drained or Undrained	OAC Rule 3745-27-08	Calculated Factor of Safety	Required Factor of Safety	Method of Calculation
Translational	Static	Drained	(C)(7)(c)(ii)	2.02	1.50	Software
Translational	Static	Drained	(C)(7)(c)(ii)	2.03	1.50	Spreadsheet*
Translational	Seismic	Drained	(C)(7)(d)(ii)	1.43	1.00	Software
Translational	Seismic	Drained	(C)(7)(d)(ii)	1.54	1.00	Spreadsheet*
Translational	Static	Undrained	(C)(7)(f)(ii)	2.07	1.10	Software
Translational	Static	Undrained	(C)(7)(f)(ii)	1.13	1.10	Spreadsheet*
Rotational	Static	Drained	(C)(7)(c)(ii)	3.78	1.50	Software
Rotational	Seismic	Drained	(C)(7)(d)(ii)	2.48	1.00	Software
Rotational	Static	Undrained	(C)(7)(f)(ii)	3.78	1.10	Software

* Software calculations were performed to analyze the 3.4H:1V slopes including the benches; spreadsheet calculations were performed to analyze the 3.4H:1V slopes between the benches.

Soil Shear Strength Requirements

The laboratory results indicate that the soil material used to construct the cap protection layer exhibits an internal shear strength of 1,126 psf which results in acceptable factors of safety over the 3.4H:1V slopes. This peak shear strength value was determined as follows:

Where:			$\tau = c + \sigma_n \tan \phi$
WINCIC.			
	С	=	893 psf
	σn	=	500 psf
			(based on a cap protection layer thickness of 2.5' and as required by the CQA/QC Plan for testing)
	φ	=	25
	τ	=	1,126 psf

Any combination of c and ϕ yielding a $\tau \ge 1,126$ psf under a normal load of 500 psf results in an acceptable FS.

153-121-Final Cover SSA Narrative.doc

		Civil &	Environme	ntal Consulta	ants, Inc.				
PROJECT 2008	FINAL CO	OVER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	ст	153	-121
DETERMINATI	ON OF INTE	RFACE ST	RENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE	12	OF	17
CENTRAL W	ASTE DISP	OSAL FA	CILITY		•				
MADE BY	DRL		10/28/15	СНЕСКЕД ВУ	AMR	DATE	10/3	30/15	
	· · · · · · · · · · · · · · · · · · ·	<u>.</u>		· - · · ·					

Interface Shear Strength Requirements

The laboratory results indicate that the soil to geosynthetics and geosynthetics to geosynthetics interfaces for the materials used to construct final cover system exhibit an interface shear strength of **158 psf** and result in acceptable factors of safety over the 3.4H:1V slopes. This peak shear strength value was determined as follows:

			$\tau = c + \sigma_n \tan \phi$
Where:			
	С	=	0 psf
	σn	=	500psf
			(based on a maximum cap protection layer thickness of 2.5')
	¢	=	17.5 ° (as described above)
	τ	=	158 psf

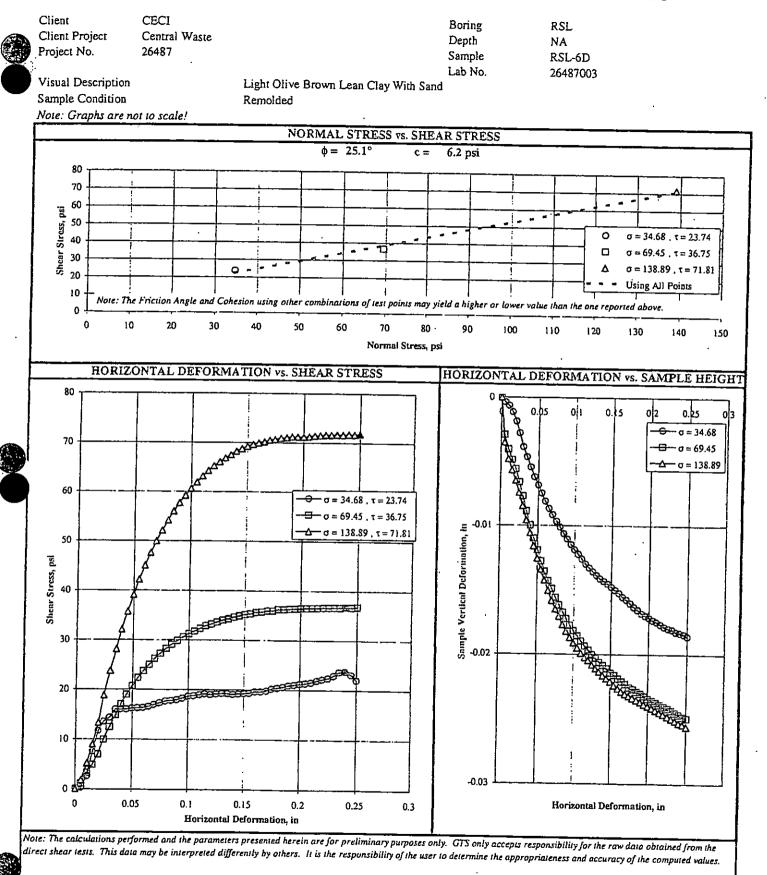
Any combination of c and ϕ yielding a $\tau \ge 158$ psf under a normal load of 500 psf results in an acceptable FS.

Geocomposite Requirements

The results of the geocomposite transmissivity calculation indicate that a minimum geonet thickness of 250 mil and transmissivity of $5.0 \times 10^{-4} \text{ m}^2/\text{sec}$ is sufficient to result in acceptable factors of safety for stability. These values are specified in the CQA/QC Plan and were used in construction.

		Civil &	Environme	ntal Consult	ants, Inc.				
PROJECT	2008 FINAL C	OVER SH.	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	न .	153	-121
DETERM	INATION OF INT	ERFACE ST	TRENGTH AND G		RANSMISSIVITY	PAGE	13	OF	17
CENTR	AL WASTE DIS	POSAL FA	CILITY			_			
MADE	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	0/15	

Attachment A


Recompacted Soil Barrier and Vegetative Cover Soil Direct Shear Strength Test Results

ł

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED DRAINED CONDITIONS

COPYRIGHT © 2002 GEOTECHNICAL TESTING SERVICES 1-800-853-7309

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED, DRAINED CONDITIONS MOHRS'S CIRCLE AND FAILURE PARAMETERS

Client Project Project No.	CECI Central Waste 26487		Boring: Depth: Sample:	RSL NA
Material:	Light Olive Brown Lear	n Clay With Sand	Sample: Lab Sample ID	RSL-6D 26487003
Condition	Remolded			
Average Friction Ans			25.1	Using All Points
Average Cobesion, c,	psi		6.2	Using All Points
Sample Condition	•		Remolded	
Normal Stress, psi		34.68	69.45	138.89
Shear Stress at Failure,		23.74	36.75	71.81
Mohr's Circle Radius,		26.2	40.6	79.3
Mohr's Circle Origin, p		45.8	86.6	172.5
Origin - Normal Stress		<u> </u>	17.2	33.6
Minor Principal Stress		19.6	46.1	. 93.2
Major Principal Stress		72.0	127.2	251.7
Principal Stress Differe		52.4	81.1	158.5
Normal Stress Pole Coo		56.9	103.8	206.0
Shear Stress Pole Coord		23.7	36.8	71.8
Assumed Failure Plane,		0 - Horizontal	0 - Horizontal	0 - Horizontal
Major Principal Failure	Plane Angle, deg	57.5	57.5	57.5
Ainor Principal Failure Maximum Shear Stress,		32.5	32.5	32.5
Aaximum Shear Stress,		26.2	40.6	79.3
nitial Water Content		19.3%	12.5	12.5
nitial Dry Density, po		107.5	19.3%	<u> </u>
200 190 180 170 160 150				
190 180 170 160 150 140 130 120		· · · · · · · · · · · · · · · · · · ·		
190 180 170 160 150 140 130 120 110 50 100 90	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
190 180 170 160 150 140 130 120 110 100		· · · · · · · · · · · · · · · · · · ·		
190 180 170 160 150 140 130 120 51 100 52 80				
190 180 170 160 150 140 130 120 110 90 80 70 60				
190 180 170 160 150 140 130 120 130 120 130 120 130 120 100 55 90 80 70				
190 180 170 160 150 140 130 120 110 5 100 5 90 80 70 60				
190 180 170 160 150 140 130 120 110 50 100 50 60 50 40				
190 180 170 160 150 140 130 120 130 120 130 120 130 120 50 60 50 40 30				
190 180 170 160 150 140 130 120 110 50 100 50 60 50 40				
190 180 170 160 150 140 130 120 130 120 130 120 130 120 50 60 50 40 30				
190 180 170 160 150 140 130 120 130 120 130 120 130 120 130 120 130 120 50 60 50 40 30 20				
190 180 170 160 150 140 130 120 140 130 120 90 80 70 60 50 40 30 20 10 0				
190 180 170 160 150 140 130 120 130 120 130 120 130 120 130 120 130 120 50 60 50 40 30 20		100 120 140 160 Normal Stress, psi		

.

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED DRAINED CONDITIONS - ASTM D 3080

Client Project

CECI Central Waste 26487

Boring RSL Depth NA Sample RSL-6D Lab No. 26487003 Light Olive Brown Lean Clay With Sand Remolded

Visual Description Sample Condition

Client

Project No.

Sample Condition		Remolded				<u> </u>			
·	·		SAMPL	E CONDIT	IONS				
Test No.		1			2			3	
	Initial	After Conso	I Final	Initial	After Conso	I. Final	Initial	After Conso	l Fina
Tare I.D.	<u>127</u>	-	65	127	-	22	127	-	69
Wt. Wet Soil & Tare, gm	191.8	-	246.9	191.8	-	241.66	191.8		245.5
Wt. Dry Soil & Tare, gm	174.33	-	221.86	174.33	- 1	218.66	174.33	<u>-</u>	i 223.4
Wt. Tare, gm	83.91	-	84.16	83.91		81.68	83.91	-	85.00
Water Content, %	19.3%	-	18.2%	19.3%	-	16.8%	19.3%	-	15.99
					1			·	
Wt. of Wet Soil & Mold, gr	316.98	-	-	317.21	-	- 1	317.59	-	
Wt. of Mold, gm	151.68	-	-	152.61	-	-	151.69	-	
Wt. of Wet Soil, gm	165.3		-	164.6	-		165.9	-	
Sample Height, in	1	0.9374	0.9188		0.9174	0.8925	1	0.8904	0.864
Sample Diameter, in	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	1 2.5
Sample Area, in^2	4.9 ·	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9
Sample Volume, cc	80.44	75.40	73.91	80.44	73.80	71.79	80.44	71.62	69.56
Wet Density, pcf	128.2	NA	138.2	127.7	NA	140.0	128.7	NA	144.6
Dry Density, pcf	107.5	NA	117.0	107.0	NA	119.9	107.9	NA	124.7
		DEFOR	MATION	RATE CAI	CULATIC	ONS	· · · · · · · · · · · · · · · · · · ·		
90, min. (Sqrt. Method)		0.38			0.24			10.50	
Equivalent t ₅₀ , min. (Sqrt.)		0.09			0.06			2.45	
50, min. (Log Method)		1.69							
Selected t ₅₀ , min. (Max.)		1.69		0.09			0.36		
Calc. Disp. Rate, in./min.		0.0028			0.09		[2.45	
Laic. Disp. Rate, Intribut.					0.0534			0.0020	
Test No.			COLDAIA	AND SUM					
		1			2			3	
Normal Stress, psi		34.69	n ,		69.45	_		138.90	
Shear Stress at Failure, psi		23.7	Peak		36.8	Peak		71.8	10% De
hear Disp. at Failure, in		0.240	•		0.240			0.250	
Displacement Rate, in/min	01	0.0010			0.0010			0.0010	
Horizontal	Shear	Shear	Vertical	Shear	Shear	Vertical	Shear	Shear j	Vertica
Displacement	Force	Stress	Deformation	Force		Deformation	Force	Stress	Deformati
in	lb.	psi	in	lb.	psi	in	lb.	psi i	in
0	0.0	0.0	0.000	0.0	0.0	0.000	0.0	0.0	0.000
0.005	1.6	0.3	0.000	5.3	1.1	-0.003	8.6	1.7 i	-0.004
0.010	12.4	2.5	-0.001	15.8	3.2	-0.004	25.5	5.2	-0.005
0.015	36.8	- 7.5	-0.001	23.8	4.8	-0.005	44.2	9.0	-0.006
0.020	57.1	11.6	-0.002	34.0	6.9	-0.006	65.2	13.3	-0.006
0.025	66.2	13.5	-0.003	48.5	9.9	-0.007	92.2	18.8	-0.007
0.030	70.0	14.3	-0.004	61.0	12.4	-0.008	116.5	23.7	-0.008
0.035	78.2	15.9	-0.005	72.7	14.8	-0.009	138.2	28.1	-0.010
0.040	78.4	16.0	-0.005	83.4	17.0	-0.010	157.7	32.1	-0.011
0.045	78.4	16.0	-0.006	<u>92.</u> 9	18.9	-0.011	175.5	35.7	-0.012
0.050	79.4	16.2	-0.007	101.4	20.7	-0.012	192.0	39.1 ,	-0.013
0.055	79.6	16.2	-0.007	109.4	22.3	-0.013	206.9	42.2 ;	-0.013
0.060	79.9	16.3	-0.008	116.1	23.7	-0.014	220.9	45.0	-0.014
		165	-0.009	122.6	25.0	-0.014	233.6	47.6	-0.015
0.065	81.2	16.5	-0.009	122.0	4J.0 I				
0.065	81.2 83.1	16.5	-0.009	128.5	26.2				
						-0.015 -0.016	245.2 255.9	50.0 52.1	-0.016 -0.016

0.085	87.0	17.7	-0.011	142.6	29.0	-0.017	274.8	56.0	-0.0
0.090	87.8	17.9	-0.011	146.4	29.8	-0.017	283.3	57.7	-0.0
0.095	89.4	18.2	-0.011	149.9	30.5	-0.018	290.5	59.2	-0.0
0.100	91.1	18.6	-0.012	153.1	31.2	-0.018	297.6	60.6	-0.0
0.105	91.9	18.7	-0.012	155.8	31.7	-0.019	303.9	61.9	-0.02
0.110	92.8	18.9	-0.013	158.7	32.3	-0.019	310.0	63.2	-0.02
0.115	93.8	19.1	-0.013	161.3	32.9	-0.019	315.3	64.2	-0.02
0.120	93.1	19.0	-0.013	163.0	33.2	-0.020	320.3	65.3	-0.02
0.125	93.8	19.1	-0.014	165.0	33.6	-0.020	324.4	66.1	-0.02
0.130	94.2	19.2	-0.014	166.8	34.0	-0.020	328.2	66.9	-0.02
0.135	94.1	19.2	-0.014	168.1	34.2	-0.021	331.4	67.5	-0.02
0.140	93.3	19.0	-0.014	169.8	34.6	-0.021	334.9	68.2.	-0.02
0.145	93.8	19.1	-0.015	171.2	34.9	-0.021	337.5	68.8	-0.02
0.150	94.1	19.2	-0.015	172.4	35.1	-0.021	340.0	69.3	-0.02
0.155	94.5	19.3	-0.015	173.2	35.3	-0.022	341.8	69.6	-0.02
0.160	96.1	19.6	-0.015	174.7	35.6	-0.022	343.4	.70.0	-0.02
0.165	96.1	19.6	-0.016	175.3	35.7	-0.022	344.6	70.2	-0.02
0.170	96.9	19.8	-0.016	176.3	35.9	-0.022	346.2	70.5	-0.02
0.175	98.8	20.1	-0.016	176.4	35.9	-0.023	346.7	70.6	-0.02
0.180	. 99.8	20.3	-0.016	177.7	. 36.2	-0.023	348.3	71.0	-0.02
0.185	100.9	20.6	-0.017	177.8	36.2	-0.023	348.7	71.0	-0.02
0.190	102.3	20.8	-0.017	178.2	36.3	-0.023	349.6	71.2	-0.02
0.195	103.0	21.0	-0.017	178.4	36.4	-0.023	349.7	71.2	-0.02
0.200	103.9	21.2	-0.017	178.9	36.4	-0.023	349.5	71.2	-0.02
0.205	104.5	21.3	-0.017	178.9	36.5	-0.024	349.9	71.3	-0.02
0.210	105.3	21.5	-0.017	179.2	36.5	-0.024	350.7	71.4	-0.02
0.215	107.0	21.8	-0.018	179.3	36.5	-0.024	351.1	71.5	-0.024
0.220	108.5	22.1	-0.018	179.5	36.6	-0.024	351.6	71.6	-0.02
0.225	109.7	22.4	-0.018	179.6	36.6	-0.024	351.7	71.7	-0.02
0.230	112.2	22.9	-0.018	179.8	36.6	-0.024	351.8	71.7	-0.02
0.235	115.9	23.6	-0.018	179.8	36.6	-0.025	351.8	71.7	-0.025
0.240	116.5	23.7	-0.018	180.4	36.8	-0.025	352.3	71.8	-0.025
0.245	113.4	· 23.1	-0.018	179.9	36.7	-0.025	351.9	71.7	-0.02
0.250	107.9	22.0	-0.019	180.4	36.7	-0.025	352.5	71.8	-0.026
			·				·		
·									····
		<u> </u>							
						_	[
							1		

COPYRIGHT © 2005 GEOTECHNICAL TESTING SERVICES 1-800-853-7309

	(Civil &	Environmer	ntal Consulta	ants, Inc.				
PROJECT 2008		/ER SH/	ALLOW SLOPE	STABILITY AN			ст _	153	-121
DETERMINAT		FACE ST	RENGTH AND G		RANSMISSIVITY	PAGE	14	OF	17
CENTRAL W	ASTE DISPO	SAL FA	CILITY			_			
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	0/15	
			<u> </u>		· · · · · · · · · · · · · · · · · · ·	-			-

Attachment B

Geocomposite Transmissivity QA and QC Test Results

SXAPS Indust	193	ASTM D 4716			
Client: American En Project: Central Wast Product: TN270-2-6 Roll # 283910245	vironmental Group, Ltd e, OH	Job # 2839			
Test Configuration:					
		+			
					
. in	F LOW 12 .X 12	OUTFLOW Test Surface			
Test Information:					
	Steel Plate	Normal Load: 10000 psf Gradient: 0.02 ft			
Boundary Conditions:	Geocomposite	Seating Time: 15 minutes			
	Steel Plate	Flow Direction: MD			
Test Results:	Steel Plate				
T		Flow Direction: MD			
Pressure (psf)	Gradient, ft	Flow Direction: MD Transmissivity, m ² /sec 15 minutes			
T		Flow Direction: MD Transmissivity, m ² /sec			
Pressure (psf)	Gradient, ft	Flow Direction: MD Transmissivity, m ² /sec 15 minutes			
Pressure (psf)	Gradient, ft	Flow Direction: MD Transmissivity, m ² /sec 15 minutes			
Pressure (psf)	Gradient, ft	Flow Direction: MD Transmissivity, m ² /sec 15 minutes			
Pressure (psf)	Gradient, ft	Flow Direction: MD Transmissivity, m ² /sec 15 minutes			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³			
Pressure (psf)	Gradient, ft 0.02	Flow Direction: MD Transmissivity, m ² /sec 15 minutes 1.28 × 10 ⁻³	 		

.

_ _ _ _

SXAPS Industries

Client: American Environmental Group, Ltd Project: Central Waste, OH P R

Job #

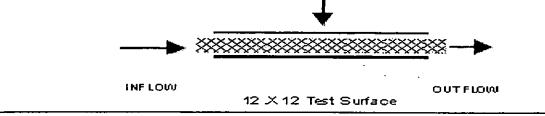
2839

ASTM D 4716

Project:	Central waste, Or	1			
Product:	TN270-2-6				
Roll #	283910245				
Test Conf	iguration:				
			¥		
		•		-	
	INF LO		OU1 Surface	FLOW	
Test Infor	mation:				-
	<u> </u>	Steel Plate	Normal Load: Gradient:	500 psf 0.33 ft	
Boundary	Conditions:	Geocomposite Steel Plate	Seating Time: Flow Direction:	15 minutes MD	

Test Results:

Pressure (psf)	Gradient, ft	Transmissivity, m ² /sec
	diddicity it	15 minutes
500	0.33	1.39 x 10 ⁻³



571 Industrial Parkway, Commerce, GA 30529 Phone: 706-336-7000 Fax: 706-336-7007 Email: skaps@skaps.com

.

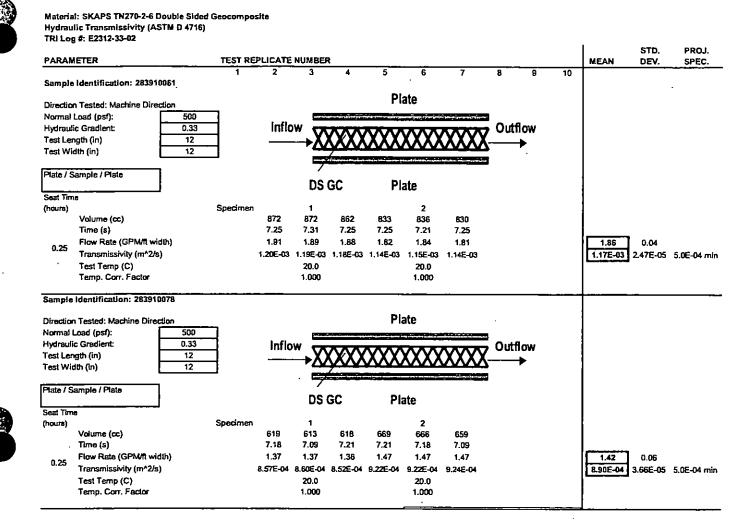
Client:	American Environmental Group, Ltd	Job #	2839
Project:	Central Waste, OH		
Product:	TN270-2-6		

Test Information:

Boundary Conditions:	Steel Plate Geocomposite Steel Plate	Normal Load: Gradient: Seating Time: Flow Direction:	500 psf 0.33 ft 15 minutes MD
----------------------	--	---	--

Test Results:

Roll Number	Gradient, ft	Transmissivity, m ² /sec				
Kon Muniber	Gradienc, it	15 minutes				
283910220	0.33	1.32 x 10 ⁻³				
283910245	0.33	1.39 x 10 ⁻³				

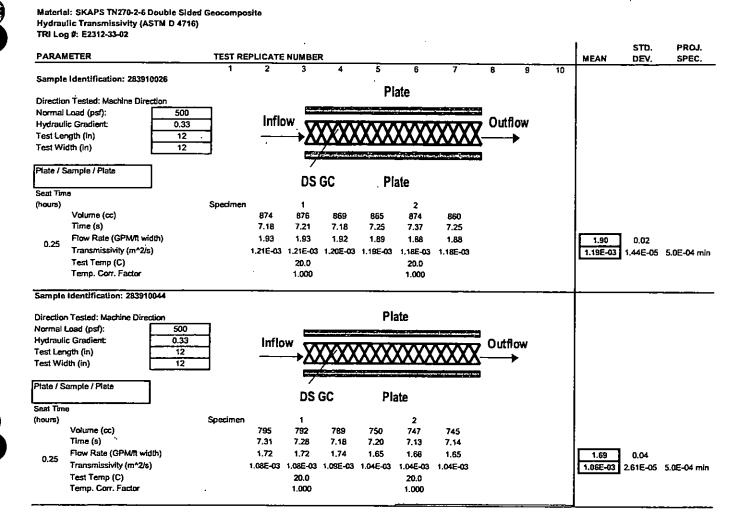

erican Environmental G Itral Waste, OH 270-2-6 on:	Group, Ltd	Job #	2839
270-2-6		·	
		···	
on:			
	\		
▶ ×	************	<u>- ************************************</u>	▶
THELOW	12 X 12 T≊t		F LOVU
tion:			
St	eel Plate		500 psf
-			0.33 ft
		1 Tr	ansmissivity, m²/sec
Pressure (psf)	Gradient, ft	· · · · · · · · · · · · · · · · · · ·	15 minutes
			1.37 x 10 ⁻³
			1.41 x 10 ⁻³
			1.38 x 10 ⁻³
500	0.33		1.36 x 10 ⁻³
			1.39 x 10 ⁻³
			1.37 x 10 ⁻³
1			
	St Gi St Pressure (psf)	12 × 12 T≅st tion: Steel Plate Geocomposite Steel Plate Pressure (psf) Gradient, ft	12 × 12 Test Surface tion: Steel Plate Geocomposite Steel Plate Steel Plate Steel Plate Flow Direction: Pressure (psf) Gradient, ft

.

GEOCOMPOSITE TEST RESULTS

TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.

GEOCOMPOSITE TEST RESULTS

TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.

page & of B GeosyntheticTesting.com 9063 Bee Caves Road / Austr, TX 78733 / 512 263 2101 / fax: 512 263 2558

.

GEOCOMPOSITE TEST RESULTS

TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill

Material: SKAPS TN270-2-6 Double Sided Geocomposite Sample Identification: 283910004 TRI Log #: E2312-33-02

•

TRILO	g #: E2312-33-02											1	STD.	PROJ.
PARAN	IETER	TEST RE	EPLICATE	NUMBER	ર							MEAN	DEV.	SPEC.
Hydrau	lic Transmissivity (ASTM D 4716)	1	2	. 3	4	5	6	7	8	9	10			
Direction	n Tested: Machine Direction					PI	ate							
Normal	Load (psf): 500			-										
Hydrauli	ic Gradient: 0.33		Inflo	w T	***			****	- Out	flow				
Test Ler	ngth (in) 12			—→X)	XXXX	XXX	XXXX	(XXX)	(
Test Wi	dth (in) 12				_			VYYV	3	•				
Plate / S	iample / Plate			DS	GC	Pi	ate		-					
Seat Tim														
(hours)		Specimen	1	1			2							
	Volume (cc)		986	1011	998	980	954	950				1		
	Time (s)		7.15	7.31	7.25	7.37	7.18	7.15						
0.25	Flow Rate (GPM/ft width)		2.19	2.19	2.18	2.11	2.11	2.11				2.15	0.04	
0,20	Transmissivity (m^2/s)		1.37E-03	1.38E-03	1.37E-03	1.32E-03	1.32E-03	1.32E-03				1.35E-03	2.76E-05	5.0E-04 m
	Test Temp (C)			20.0			20.0		-				1	
	Temp. Corr. Factor			1.000			1.000							
Thickne	ss (ASTM D 5199)	-	<u>-</u> -		Geor	et Comp	onent					1		· · · ·
Thicknes	Ss (mils)	282	286	276	284	279	282	· 292	290	298	276	285	7 << min	250 min
Density	(ASTM D 1505)	<u> </u>			Geor	let Compo	onent					L		
Density ((g/cm3)	0.947	0.947	0.947								0.947	0.000	0.94 min
Carbon	Black Content (ASTM D 1603, mor	d.)			Geor	et Compo	onent					<u> </u>	-	
% Carbo	an Black	2.31	2.32									2.32	0.01	2.0 - 3.5%

.

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.

GEOCOMPOSITE TEST RESULTS

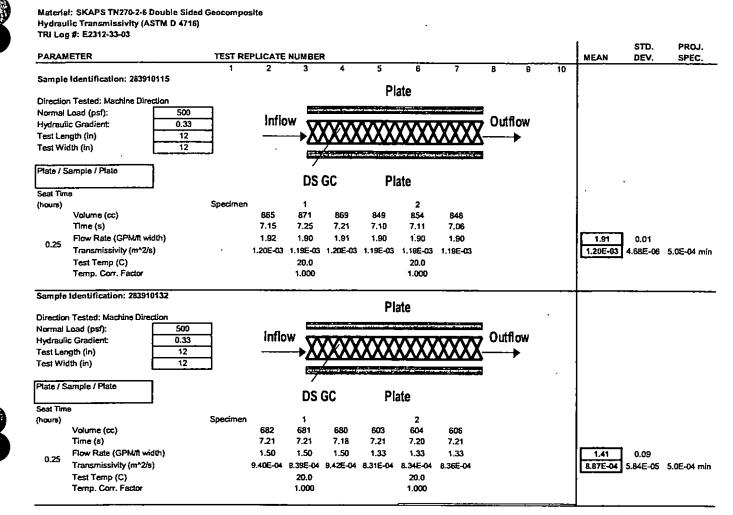
TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill

Material: SKAPS TN270-2-6 Double Sided Geocomposite Hydraulic Transmissivity (ASTM D 4716) TRI Log #: E2312-33-03

	#: E2312-33-03											1	STD.	PROJ.
PARAM	IETER		PLICATE		-							MEAN	DEV.	SPEC.
Sample	Identification: 283910149	1	2	3	4	5	6	7	8	9	10			
Direction	n Tested: Machine Direction					Pla	ate							
	Load (psf): 500													
Hydrauli	c Gradient: 0.33		Infla		***	****			Outfle	ow		1		
Test Ler				_→X)	(XXX	XXX	XXXX	XXXX		•		1		
Test Wi	dth (in) 12_						X X X							
Plate / S	ample / Plate			DS	GC	Pla	nte		-					
Seat Tim						• •						1		
hours)	~	Specimen		1			2					1		
,	Volume (cc)		544	543	530	550	629	538				1	•	
	Time (s)		5.40	5.50	5.31	5.30	6.43	5.40				1		
	Flow Rate (GPM/ft width)		1.60	1.57	1.58	1.65	1.55	1.58				1.59	0.03	
0.25	Transmissivity (m^2/s)		1.00E-03	9.82E-04	9.92E-04	1.03E-03	9.73E-04	9.91E-04				9.95E-04	2.05E-05	5.0E-04
	Test Temp (C)			20.0			20.0						4	
	Temp. Corr. Factor			1.000			1.000							
Sample	Identification: 283910167					Pl	ate							
Direction	Tested: Machine Direction								1					
Normal I	Load (psf): 500		Inflo	w. 🗠	$\overline{\mathcal{X}}$	\sim	$\overline{\mathcal{N}}$	\sim	Outfl	ow				
	c Gradient: 0.33			→∆	$\overline{\lambda}$	$\sim \sim \sim$,)	Þ				
lest Ler		_				hang han a da ana			1					
Fest Wie	ith (in) 12			DS	GC	Pla	ite ·							
Piate / S	ample / Piate													
Seat Tim	•													
hours)		Specimen		1			2					ł		
	Volume (cc)		547	538	511	551	550	600				1		
	Time (s)		5.84	5.75	5.46	5.00	5.06	5.50				[1	
0.25	Flow Rate (GPM/It width)		1.48	1.48	1.48	1.75	1.72	1.73				1.61	0.14	
	Transmissivity (m^2/s)		9.31E-04		9.30E-04	1.10E-03	1.08E-03	1.08E-03				1.01E-03	8.58E-05	5.0E-04
0.20							20.0							
	Test Temp (C) Temp. Corr. Factor			20.0 1.000			1.000					1		

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.



GEOCOMPOSITE TEST RESULTS

A Texas Research International Company

TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the materiat. TRI observes and maintains client confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.

GEOCOMPOSITE TEST RESULTS

TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill

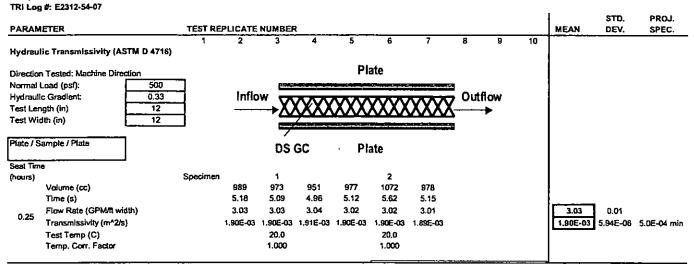
_

Material: SKAPS TN270-2-6 Double Sided Geocomposite Sample Identification: 283910184 TRI Log #: E2312-33-03

	g #: E2312-33-03											1	STD.	PROJ.
PARAM	RETER	TEST RE	PLICATE	NUMBER	2							MEAN	DEV.	SPEC.
Hydrau	lic Transmissivity (ASTM D 4716)	1	2	3	4	5	6 ate	7	8	8	10			
Direction	n Tested: Machine Direction					F 1	ate							
Normal	Load (psf): 500	-		N	- and a star	<u> </u>			3					
	lc Gradient: 0.33		Inflo	W TA		***		***	- Out	flow				
Test Ler	ngth (in) 12			— → XX	XXXX	XXX	XXXX	(XXX)	(-▶				
Test Wi					_				1 7					
Plate / S	Sample / Plate .			7					-				•	
				DS	GC	Pl	ate							
Seat Tim	e													
(hours)		Specimen		1			2							
	Volume (cc)		697 7.15	703	697	691	681	678						
	Time (s)			7.15	7.15	7.20	7,14	7.13						
0.25	Flow Rate (GPM/It width)		1.55	1.56	1.55	1.52	1.51	1.51				1.53	0.02	
	Transmissivity (m^2/s)		9.69E-04	9.78E-04	9.69E-04	9.54E-04		9.45E-04				9.61E-04	1.31E-05	5.0E-04 m
	Test Temp (C)			20.0			20.0					4		
	Temp. Corr. Factor			1.000			1,000							
Thickne	255 (ASTM D 5199)				Geor	et Comp	onent					1		
Thicknes	ss (mils)	280	278	276	281	277	281	288	286	284	301	283 276	7 << min	250 min
Density	(ASTM D 1505)		·		Geor	et Compo	onent					-		
Density ((g/cm3)	0.947	0.947	0. 9 47								0.947	0.000	0.94 min
Carbon	Black Content (ASTM D 1603, mo	d.)	<u></u>		Geor	et Compo	onent					<u> </u>		
% Carbo	on Black	2.34	2.32									2.33	0.01	2.0 - 3.59

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material.

TRI observes and maintains client confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.



GEOCOMPOSITE TEST RESULTS

TRI Client: Civil & Environmental Consultants, Inc.

Project: Central Waste Landfill

Material: SKAPS TN270-2-6 Double Sided Geocomposite Sample Identification: 283910205

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains dilent confidentiality. TRI limits reproduction: of this report, except in full, without prior approval of TRI.

		Civil &	Environme	ntal Consulta	ants, Inc.		
PROJECT 20	08 FINAL CO	OVER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJECT	153-121
DETERMINA	TION OF INTE		RENGTH AND G	EOCOMPOSITE TI	RANSMISSIVITY	PAGE 1	5_OF17
ENTRAL	WASTE DISF	OSAL FA	CILITY		_	_	
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE 1	0/30/15

Attachment C

Interface Shear Strength Test Results

June 27, 2008

Mr. John Schmidt, P.E. Ohio EPA Northeast District Office Division of Solid and Infectious Waste Management 2110 East Aurora Road Twinsburg, Ohio 44087

Dear Mr. Schmidt:

Subject: Interface Shear Strength Testing Results 2008 Closure Construction Permit to Install # 02-13262 Central Waste Disposal Facility CEC Project 072-230.0005

On behalf of Central Waste, Inc. (CWI), Civil & Environmental Consultants, Inc. (CEC) is submitting the Shear Strength Testing Results for the final cover system components proposed for use in 2008 Closure construction at the Central Waste Disposal Facility in Alliance, Ohio. This information is submitted in accordance with the CQA/QC Plan and OAC 3745-27-08(G).

The CQA/QC Plan and OAC 3745-27-08(G) requires the shear strength to be tested twice prior to the initial use of each geosynthetic material in the final cover system at the facility. Two tests were conducted on each of the interfaces listed below.

- Poly Flex 40 mil LLDPE Textured Geomembrane vs. Recompacted Soil Barrier (RSB)
- Skaps TN270-2-6 Double-sided Geocomposite vs. Poly Flex 40 mil LLDPE Textured Geomembrane
- Skaps TN270-2-6 Double-sided Geocomposite vs. Frost Protection/Vegetative Cover

Testing was conducted at the following normal loads for comparison to the required peak shear strengths listed in the QA/QC Plan and summarized in the following table.

Normal Load	Required Peak Shear
(psf)	Strength (psf)
500	250

333 Baldwin Road Pittsburgh, Pennsylvania 15205 Phone 412/429-2324 Fax 412/429-2114 Toll Free 800/365-2324 E-mail Info@cecinc.com

Civil & Environmental Consultants, Inc.

 $\left(\right)$

Chicago	877/963-6026
Cincinnati	800/759-5614
Cleveland	866/507-2324
Columbus	888/598-6808
Detroit	866/380-2324
Export	800/899-3610
ndianapolis	877/746-0749
Nashville	800/763-2326
St. Louis	866/250-3679

Comorate Web Site http://www.ce

Mr. John Schmidt, P.E. CEC Project 072-230.0005 Page 2 June 27, 2008

The interfaces tested met the requirements of the facility's QA/QC Plan as shown in the following table. The laboratory testing results are included in Attachment 1.

Interface Tested	Normal Load (psf)	Required Shear Strength (psf)	Peak Shear Strength (psf)
40 mil textured vs. RSB – Test 1	500	250	329
40 mil textured vs. RSB – Test 2	500	250	348
Geocomposite vs. 40 mil textured - Test 1	500	· 250	277
Geocomposite vs. 40 mil textured – Test 2	500	250	297
Geocomposite vs. protective cover - Test 1	500	250	360
Geocomposite vs. protective cover - Test 2	500	250	299

Please contact Tom Johnson with CWI at (330) 823-6220 or CEC at (412) 429-2324 if you have any questions regarding this report.

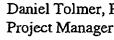
Sincerely,

CIVIL & ENVIRONMENTAL CONSULTANTS, INC.

Daniel Tolmer, P.E.

Der Junou

Duane R. Lanoue, P.E. Senior Project Manager

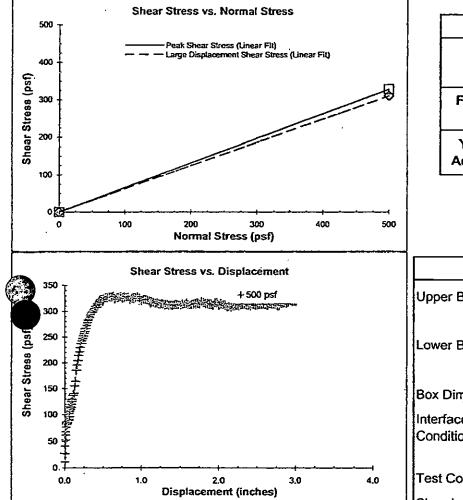

Enclosure

Mary Helen Smith, District Board of Health of Mahoning County (w/enclosure) cc: Tom Johnson, CWI (w/enclosure) Steve Menoff, TransLoad America, Inc. (without enclosure) Jim Stenborg, TransLoad America, Inc. (without enclosure)

LR-072-230.0005 Ja27/W

ATTACHMENT 1

LABORATORY TESTING RESULTS


Interface Friction Test Report

TRI Log#: E2308-23-05 Test Method: ASTM D 5321

John M. Allen, 06/17/2008

Quality Review/Date

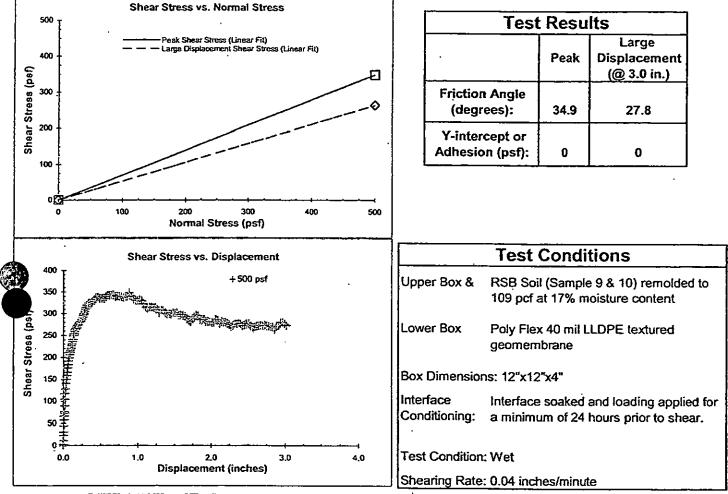
Tested Interface: Poly Flex 40 mil LLDPE Textured Geomembrane (LT-4-07-6001-75) vs. RSB Soil (Sample 9 & 10), Test 1 of 2

Test Results		
	Peak	Large Displacement (@ 3.0 in.)
Friction Angle (degrees):	33.3	31.9
Y-intercept or Adhesion (psf):	0	0

1	
	Test Conditions
Upper Box &	RSB Soil (Sample 9 & 10) remolded to 109 pcf at 17% moisture content
Lower Box	Poly Flex 40 mil LLDPE textured geomembrane
Box Dimension	ns: 12"x12"x4"
Interface Conditioning:	Interface soaked and loading applied for a minimum of 24 hours prior to shear.
Test Condition	: Wet
Shearing Rate	: 0.04 inches/minute

Test Data	
Specimen No.	1
Bearing Slide Resistance (Ibs)	13
Normal Stress (psf)	500
Corrected Peak Shear Stress (psf)	329
Corrected Large Displacement Shear Stress (psf)	311
Peak Secant Angle (degrees)	33.3
Large Displacement Secant Angle (degrees)	31.9
Asperity (mils)	23.6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.


Interface Friction Test Report

Project: CEC Project: Central Waste, Closure Area 1 Test Date: 06/16/08-06/17/08 TRI Log#: E2308-23-05 Test Method: ASTM D 5321

John M. Allen, 06/17/2008

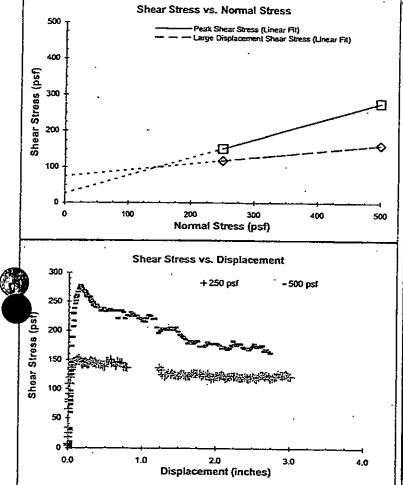
Quality Review/Date

Tested Interface: Poly Flex 40 mil LLDPE Textured Geomembrane (representative) vs. RSB Soil (Sample 9 & 10), Test 2 of 2

Test Data	······································
Specimen No.	1
Bearing Slide Resistance (lbs)	13
Normal Stress (psf)	500
Corrected Peak Shear Stress (psf)	348
Corrected Large Displacement Shear Stress (psf)	264
Peak Secant Angle (degrees)	34.9
Large Displacement Secant Angle (degrees)	27.8
Asperity (mils)	23.4

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI/ENVIRONMENTAL, INC. A Texas Research International Company


Interface Friction Test Report

Client: CEC Project: Central Waste, Closure Area 1 Test Date: 06/09/08-06/24/08

TRI Log#: E2308-23-05 Test Method: ASTM D 5321

Rich Lacey, P.E., 06/25/2008 Quality Review/Date

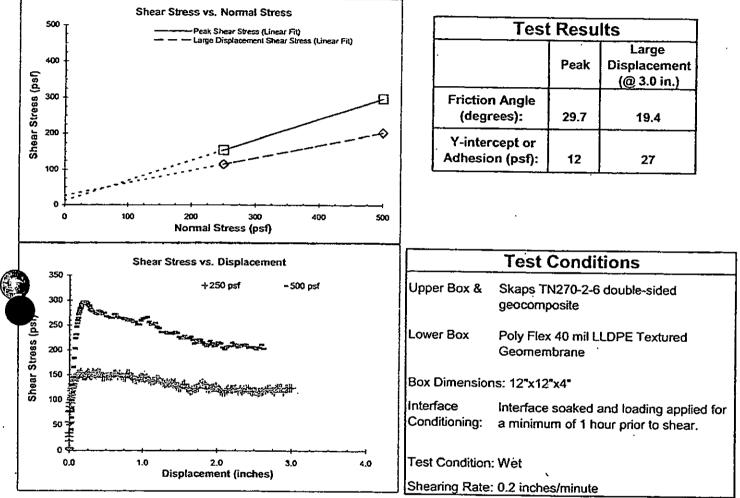
Tested Interface: Skaps TN270-2-6 Double-sided Geocomposite (representative) vs. Poly Flex 40 mil LLDPE Textured Geomembrane (representative), Test 1 of 2

Tes	t Resu	lts
	Peak	Large Displacement (@ 3.0 in.)
Friction Angle (degrees):	26.7	10.0
Y-intercept or Adhesion (psf):	26	74

]	Test Conditions
Upper Box &	Skaps TN270-2-6 double-sided geocomposite
Lower Box	Poly Flex 40 mil LLDPE Textured Geomembrane
Box Dimensio	ns: 12"x12"x4"
Interface Conditioning:	Interface soaked and loading applied for a minimum of 1 hour prior to shear.
Test Condition	: Wet
Shearing Rate	: 0.2 inches/minute

Test Data		
Specimen No.		2
Bearing Slide Resistance (lbs)	10	13
Normal Stress (psf)	250	500
Corrected Peak Shear Stress (psf)	152	277
Corrected Large Displacement Shear Stress (psf)	. 118	162
Peak Secant Angle (degrees)	31.2	29.0
Large Displacement Secant Angle (degrees)	25.3	18.0
Aspenty (mils)	25.2	21.0

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.


Interface Friction Test Report

Hient:CECProject:Central Waste, Closure Area 1Test Date:06/17/08-06/17/08

TRI Log#: E2308-23-05 Test Method: ASTM D 5321

John M. Allen, E.I.T., 06/17/2008 Quality Review/Date

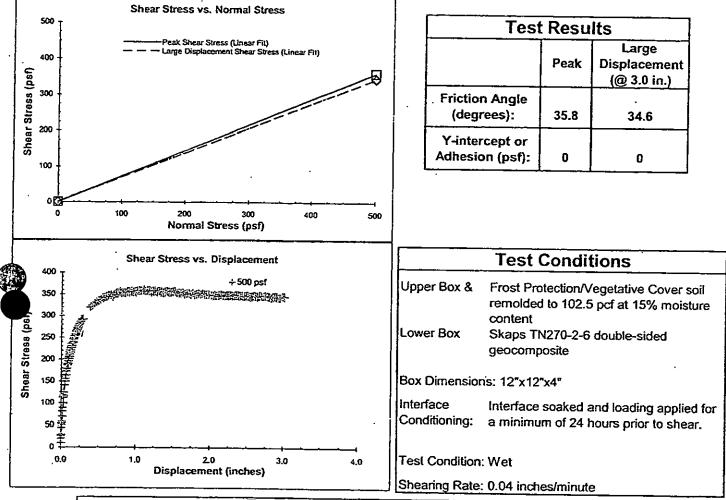
Tested Interface: Skaps TN270-2-6 Double-sided Geocomposite (representative) vs. Poly Flex 40 mil LLDPE Textured Geomembrane (representative), Test 2 of 2

Test Data		
Specimen No.		2
Bearing Slide Resistance (lbs)	10	13
Normal Stress (psf)	250	500
Corrected Peak Shear Stress (psf)	155	297
Corrected Large Displacement Shear Stress (psf)	115	203
Peak Secant Angle (degrees)	31.7	30.7
Large Displacement Secant Angle (degrees)	24.7	22.1
Aspenity (mils)	25.0	26.4

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI/ENVIRONMENTAL, INC. A Texas Research International Company

lient:


Interface Friction Test Report

CEC Central Waste, Closure Area 1 Project: Test Date: 06/16/08-06/17/08

TRI Log#: E2308-23-05 Test Method: ASTM D 5321

John M. Allen, 06/17/2008 Quality Review/Date

Tested Interface: Skaps TN270-2-6 Double-sided Geocomposite (representative) vs. Frost Protection/Vegetative Cover Soil (Sample 11 & 12), Test 1 of 2

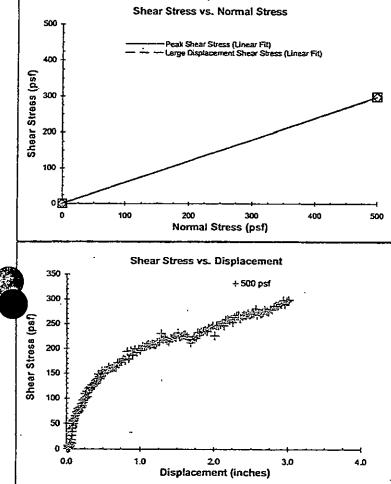
Test Data	
Specimen No.	
Bearing Slide Resistance (Ibs)	13
Normal Stress (psf)	500
Corrected Peak Shear Stress (psf)	360
Corrected Large Displacement Shear Stress (psf)	345
Peak Secant Angle (degrees)	35.8
Large Displacement Secant Angle (degrees)	34.6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI/ENVIRONMENTAL, INC. A Texas Research International Company

No. 2015.2

Interface Friction Test Report

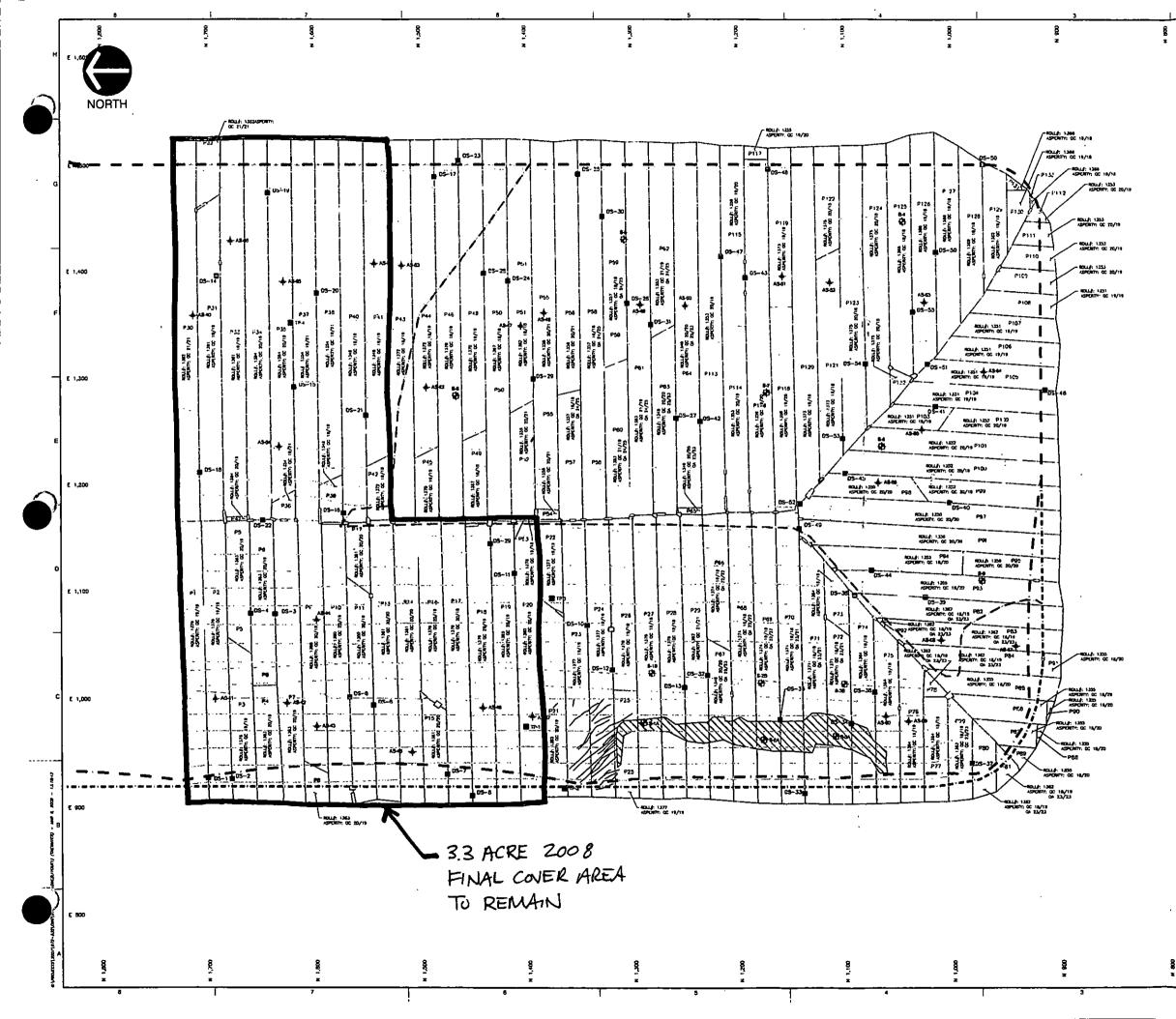

Client: CEC Project: Central Waste, Closure Area 1 Test Date: 06/16/08-06/17/08 TRI Log#: E2308-23-05 Test Method: ASTM D 5321

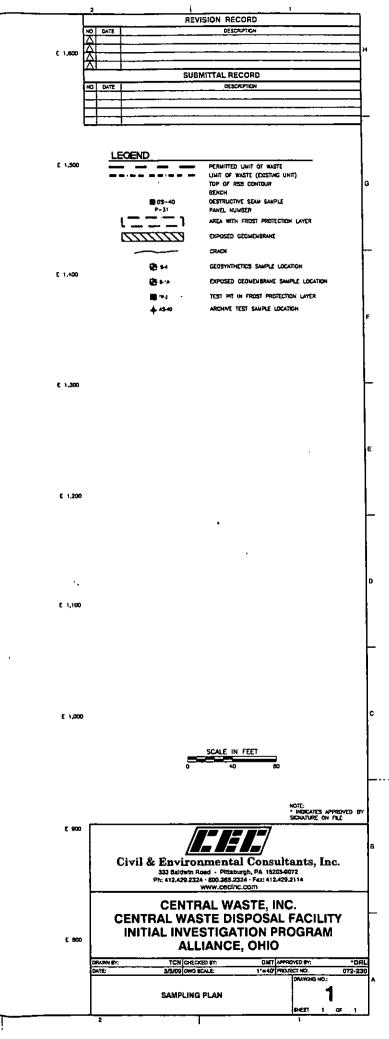
ALCONTRACTOR AND A

John M. Allen, 06/17/2008 Quality Review/Date

and the second second second second second

Tested Interface: Skaps TN270-2-6 Double-sided Geocomposite (representative) vs. Frost Protection/Vegetative Cover Soil (Sample 11 & 12), Test 2 of 2


Test Results		
	Peak	Large Displacement (@ 3.0 in.)
Friction Angle (degrees):	30.8	30.8
Y-intercept or Adhesion (psf):	0	0


	Test Conditions
Upper Box &	Frost Protection/Vegetative Cover soil remolded to 102.5 pcf at 15% moisture content
Lower Box	Skaps TN270-2-6 double-sided geocomposite
Box Dimension	ns: 12"x12"x4"
Interface Conditioning:	Interface soaked and loading applied for a minimum of 24 hours prior to shear.
Test Condition	: Wet
Shearing Rate	: 0.04 inches/minute

Test Data	
Specimen No.	1
Bearing Slide Resistance (lbs)	13
Normal Stress (psf)	500
Corrected Peak Shear Stress (psf)	299
Corrected Large Displacement Shear Stress (psf)	298
Peak Secant Angle (degrees)	30.8
Large Displacement Secant Angle (degrees)	30.8

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

GEOCOMPOSITE VS. LLDPE GEOMEMBRANE INTERFACE TEST RESULTS SUMMARY 2008 CLOSURE CONSTRUCTION CENTRAL WASTE DISPOSAL FACILITY CENTRAL WASTE , INC.

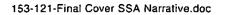
			<u> </u>	Required	<u> </u>	Geotechnics		J	LT Laboratori	es		TRI			Average	Average Lab
SKAPS TN270-2-6 Geocomposite vs Poly Flex 40 mil LLDPE Textured Geomembrane Interface Sample	Poly Flex 40 mil Roll No.	QC Asperity (1)	Normal Load (psf)	Shear Strength ⁽²⁾ (psf)	Asperity Height	Peak Shear Strength (psf)	Residual Shear Strength (psf)	Asperity Height	Peak Shear Strength (psf)	Residual Shear Strength (psf)	Asperity Height	Peak Shear Strength (psf)	Residual Shear Strength (psf)	Average Lab Sample Asperity	Lab Peak Shear Strength (psf)	Residual Shear Strength
						SLOPE FAIL	URE INVEST	FIGATION	•							- 1
						INTERFACE	SHEAR TEST	FRESULTS								
AS 40	1382	21/21	500	250	19.4	181	139	18.9	167	110	21.6	276	194	20.0	208	148
AS 41	1376	19/19	500	250	18.4	195	135	18.2	200	121	21.6	235	164	19.4	210	140
AS 42	1363	20/19	500	250	18.4	211	141	18.3	191	125	22.8	302	198	19.8	235	155
AS 43	1380	20/19	500	250	21.8	209	155	18.9	201	131	22.6	266	185	21.1	225	157
AS 44	1380	20/19	500	250	18.8	165	90	19.1	195	106	23.8	279	191	20.6	213	129
AS 45	1381	20/20	500	250	22.4	224	160	18.7	201	121	25.2	256	163	22.1	227	148
AS 46	1379	20/19	500	250	17.2	143	81	18.0	189	115	22.6	290	203	19.3	207	133
AS 60	1364	19/19	500	250	20.8	129	95	18.4	199	114	23.6	271	181	20.9	200	130
AS 61	1348	19/19	500	250	23.2	218	123	18.6	187	112	21.8	224	180	21.2	210	138
AS 62*	1372	18/19	500	250	16.4	178	136	18.3	215	122	18.6	227	174	17.8	207	144
AS 63	1372	18/19	500	250	17.0	182	137	19.3	210	118	20.4	241	229	18.9	211	161
AS 64	1384	20/19	500	250	19.4	212	124	19.0	178	112	23.6	235	197	20.7	208	144
AS 65	1384	20/19	500	250	21.4	205	158	18.5	190	118	23.4	266	211	21.1	220	162
AS 66	1361	19/19	500	250	20.8	228	158	18.3	182	91	24.8	259	220	21.3	223	156
AS 67	1385	20/19	500	250	20.2	175	119	18.0	170	101	21.6	266	194	19.9	204	138
	Minimum				16.4	129	81	18.0	167	91	18.6	224	163	18	200	129
	Maximum				23.2	228	160	19.3	215	131	25.2	302	229	22	235	162
	Average				19.7	190	130	18.6	192	114	22.5	260	192	20	214	146

Notes:

1. QC Asperity values represents each side of the geomembrane.

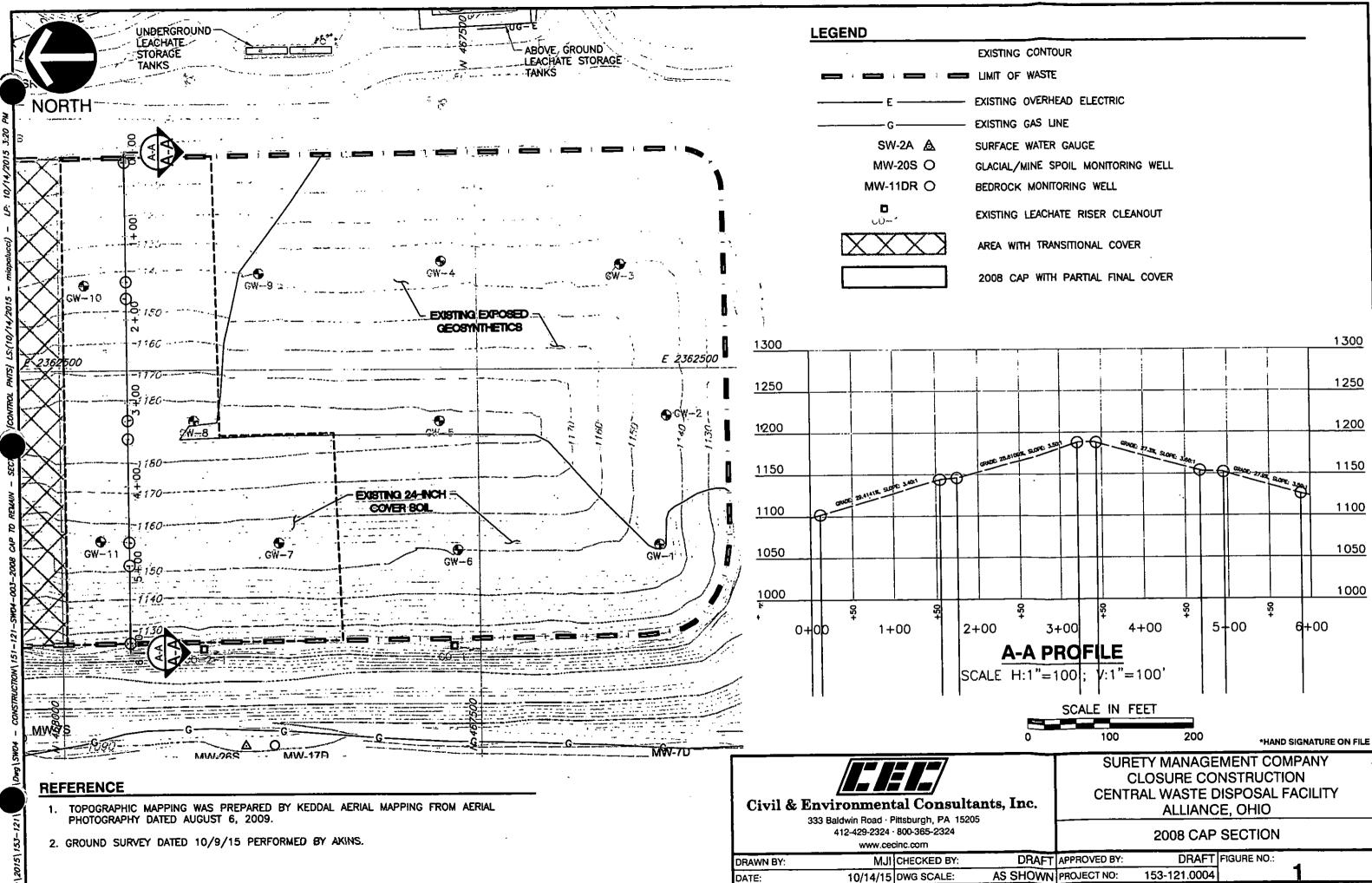
2. A peak interface shear strength of 250 psf is required to achieve a slope stability factor of safety of 1.5, and a peak interface shear strength of 167 is required to achieve a slope stability factor of safety of 1.0, based on a maximum slope of 3H:1V.

* Indicates Geomembrane sampled was tested with a different Geocomposite sample.


			Civil &	Environmer	ntal Consulta	ants, Inc.				
PROJECT	2008 FI	NAL CO	VER SH	ALLOW SLOPE	STABILITY AN	ALYSIS	PROJEC	ст	153-	-121
DETERN	INATION	OF INTE	RFACE ST	RENGTH AND GI	EOCOMPOSITE T	RANSMISSIVITY	PAGE	16	OF	17
CENTR	AL WAS	TE DISP	OSAL FA	CILITY			-		-	
MADE	BY	DRL	_ DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	0/15	

Attachment D

Spreadsheet Based Translational Failure Surface Calculations


٠.

.

:

CENTRAL WASTE DISPOSAL FACILITY FINAL COVER SYSTEM SHALLOW SLOPE STABILITY ANALYSIS INPUT TABLE

	otes an input value otes an automatical	h, colouioted cell				
	VALUES	iy calculated cell		v		
thickness of cover soil at the top of the slope = hc =		ft =	0.762	meters = 1	_762 m	
thickness of cover soil at the bottom of the slope = D =		h	(d. 1 d. 1	1		
Drainage layer thickness = t =		mil =	0 635]em ≖ f	6 35 m	
slope beneath the geomernbrane (xH:1V) =		H:1V				
slope angle beneath the geomembrane = β =	16.39	decrees				
finished slope angle = ω =	16.39	degrees	(for unifor	m cover soil th	uckness ω = B	1
length of slope measured along the geomembrane + L =	100.0	ft ≏	50 48	Imeters		
tength of slope between drainage outlets = L =	100.0	ft =	30 48	meters		
Moist Unit Weight of Cover soil = y, =	130.00	pcf =	20 42	kN/m^3		
Saturated unit weight = Y _m =	140.00	pcf =	21 99	kN/m*3		
friction angle of the cover soil = ϕ =	25	degrees	<u> </u>	-		
cohesion of the cover soil = c =	. 893	b/ft^Z				
minimum interface friction angle = δ =	17.5	degrees				
minimum interface adhesion 🛥 ca 🖛	0.0	lb/ft^2				
Unadjusted Curve Number	79					
STORM EVENT YEAR	100	Year				
STORM EVENT HOUR	1	Hour				
STORM EVENT RAINFALL	2.59	Inches =	65.79			
FACTOR OF SAFETY FOR DRAINAGE	2.0			_		
DESIGN STORM EVENT RAINFALL	S.18	inches =	131 57	mm/hour		
Permeability of cover material = q _h =	1.00E-04	cm/sec				
Permeability of drainage layer = ke=	1.825	cm/sec				
Long Term Design Transmissivity = 0 =	1 16E-04	m*2/sec				
Reduction Factor for geotextile intrusion #RFM#	1]				
Reduction Factor for creep deformation = RF _{cn} =	1,4	1				
Reduction Factor for chemical clogging = RFoc =	1.1	1				
Reduction Factor for biological clogging = RF _{lic} =	2.8	1				
equipment ground pressure (- wt. of equipment/(2wb)) = q =	679.1	lb/ft^2	"Influence Factor	Default Values		
length of each equipment track = w =	9.40	ft	Cover Sol	Equí	ment Track Wi	an l
width of each equipment track = b =	3.00.	ft	Thickness	Vory Wide	Wide	Standard
influence factor* at geomembrane interface = I = acceleration/deceleration of the bulldozer = a =	0.97	See Table>	*300 mm	1.00	0.97	0.94
	0.00	19	300-1000 mm	0.97	0.92	0.70
seisme coefficient - Cs -	0.12]9	* 1000 mm	0.95	0.75	0.30
CALLER THE ALLER AND AND A STREET AND AND A STREET AND			C 117	<u> </u>		
Ultimate Geocomposite Transmissivity Specification =	5.00E-04	m²/sec				
Slope Stability Fac	tor of Safety Sun	nmary				
		<u> </u>		<u> </u>		
Method	FS	Requ	ired FS	7		
Static - Translational - Drained	2.03 2.03	·	.50	-		
Seismic - Translational - Drained	1.54 march		.00	-		
Static - Translational - Saturated	TTT: 1.13 127**	·····	1,10			
		1				

٠

.

•

-

- - -

070-963 revised GRI 18 and 19.FinalCover.xls

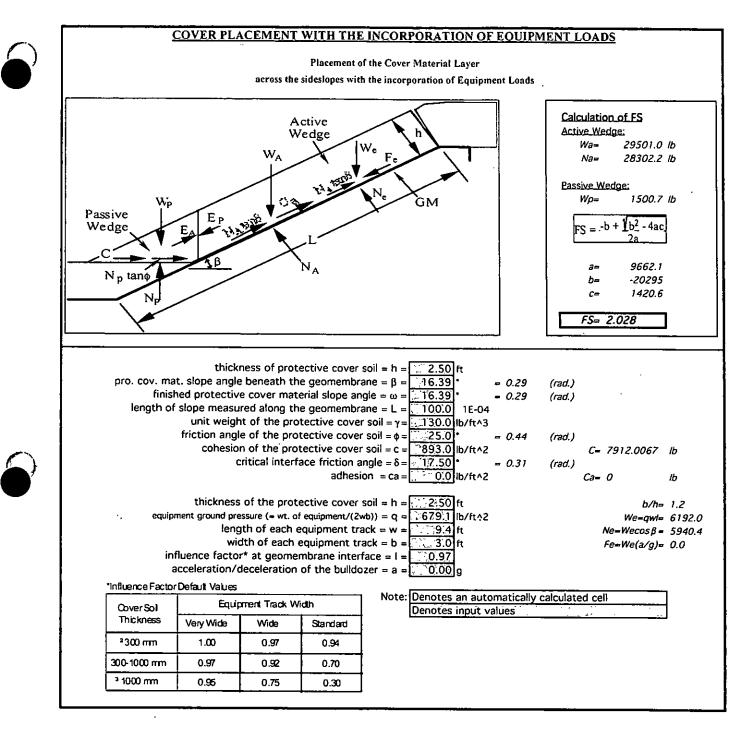
Final Cover Runoff Coefficient Calculation

The adjusted SCS Curve Number is calculated as: $CN = 100 - (100 - CN_0) + (L^2 / S) C_0^{O_0 - 0.01}$

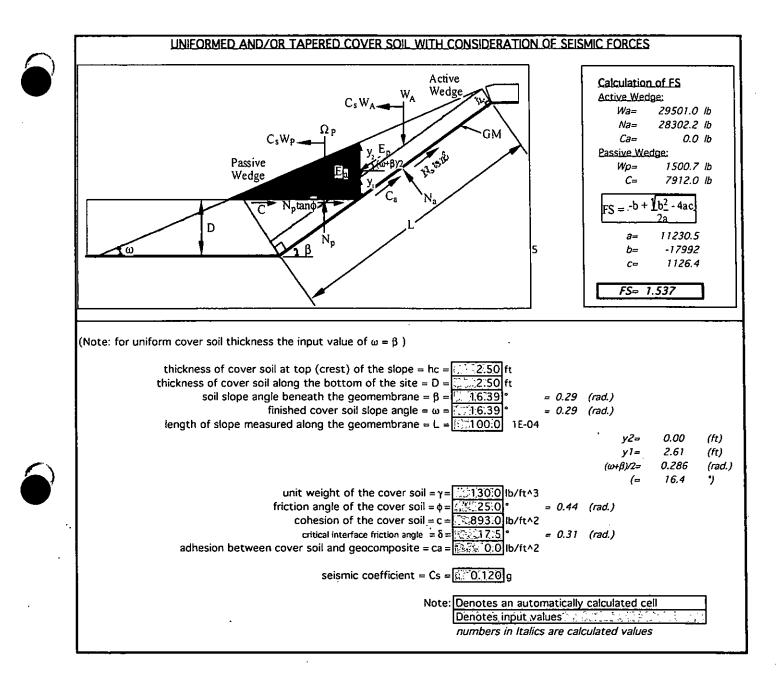
CN0						
	SCS curve number ((unadjusted for a	slope), from Figure A-3	of GRI Rep	ort #19 Appendix	
L L			= L divided by 152 m			
S		nsionless Inclina	ation = s / 0.04 (whe		ed as the vertica	I rise over the horizo
nput Vanables			•			
CN₀ =	79					
Slope Length =	100	feet or	30.47851	meters		
. <u>S=</u>	3.40	on 1	0.294	percent.	which yields	7.353
Storm Event						
100	year	1	hour	storm		
5.180	inches/hour or	131.572	millimeters/hour			
Calculated Variables	,		· · · · · · · · · · · · · · · · · · ·	1		
CN0 ^{-0.81} =	0.02904			1		
L2/S=	0.0055					
100 - CNo =	21					
100-016-	21					
CN = The Potential Retention, (PR) in millimeters is cal	81.9 culated by:	· · · · · · · · · · · · · · · · · · ·		J		
PR = (25400 / CN) - 254	0.0001					
PR = (25400 / CN) - 254 . PR =	0.0001	millimeters				
PR =	56	millimeters				
PR =	56	• PR} 2				
PR = The Runoff Coefficient, RC(t), as a function of tim	56 re is determined by: [P(t) - 0.2 *	• PR} 2	<u> </u>			
PR = The Runoff Coefficient, RC(t), as a function of tim RC(t) =	56 re is determined by: [P(t) - 0.2 *	PR] ² 0.8°PR]				
PR = The Runoff Coefficient, RC(t), as a function of tim RC(t) = Where:	56 10 is determined by: <u>[P(t) + 0.2 +</u> P(t) * [P(t) +	PR] ² 0.8°PR]				
PR = The Runoff Coefficient, RC(t), as a function of tim RC(t) = Where: P(t) =	56 (P(t) - 0.2 - P(t) * (P(t) + Accumulated Precip I * L P(t) = (*t	PR] ² 0.8*PR]				
PR = The Runoff Coefficient, RC(t), as a function of tim RC(t) = Where: P(t) = P(t) =	56 (P(t) - 0.2 - P(t) * (P(t) + Accumulated Precip	PR] ² 0.8*PR]				
The Runoff Coefficient, RC(t), as a function of tim RC(t) = Where: P(t) = P(t) = P(t) =	56 (P(t) - 0.2 - P(t) * (P(t) + Accumulated Precip I * L P(t) = (*t	PR] ² 0.8*PR]				

٠.

.



RC(t) =

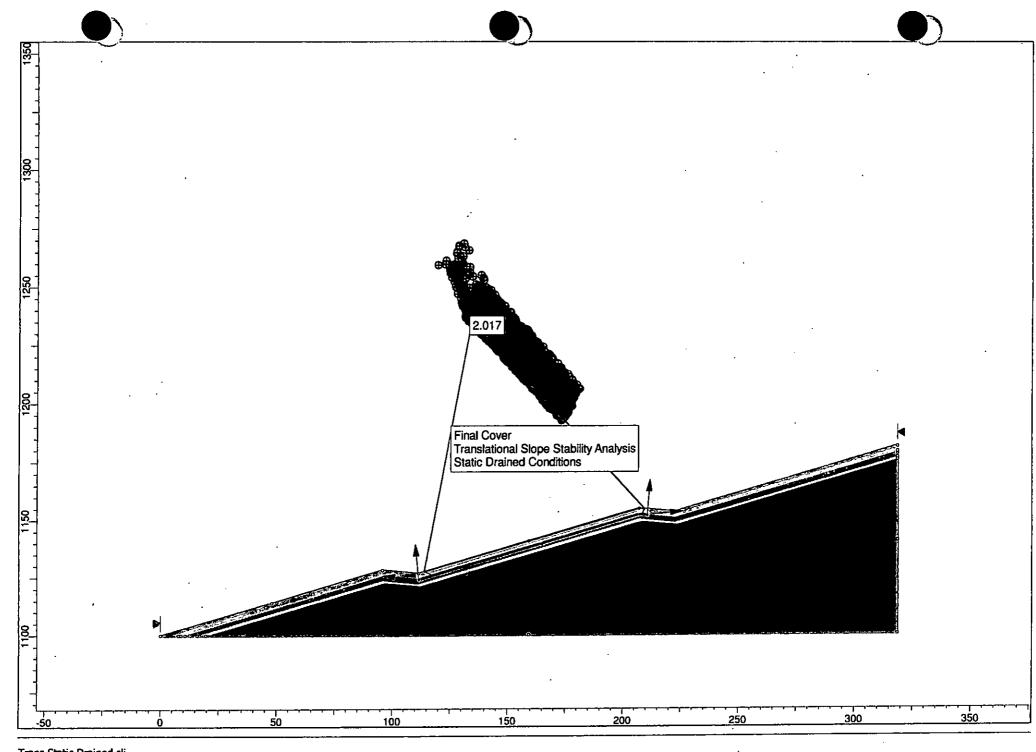

۰.

Civil Environmental Consultants, Inc.

070-963 revised GRI 18 and 19. FinalCover.xls Civil & Environmental Consultants, Inc

Calculation of DLC and PSR **Calculation of FS** Active Wedge: WA = 456.25801 KN (a) Active wedge Un = 1.6283585 kN $U_h = -0.0001582 \text{ kN}$ sinf sint cost NA = 436.08982 kN kc.s. hc s Passive Wedge: Wp = 22.268243 kN $U_V = -0.0005378 \text{ kN}$ i havg _H_ sin∄ ks i= sin (tan⁻¹(_x_)) 100 ħ, FS = - 0+ 102 - 480 = sin fl 2A សាក់ 123.5 here a b = -155.9 L = 30.48 i = 0.2822 c = β = 16.39 18,1 $L(\cos\beta) = 29.24$ m m x = 8.60 DLC 1.118 _h_ couß FS= 1.13 hcs = 762.00 0.00739 $h_{C.S} = 0.8$ PSR m mm h or tos = 6.35 h_d or $t_{GS} = 0.00635$ m mm *PSR* = <u>h</u> h $h_{c.s.} + h_d = 0.77$ m) .t. coil N= 1000 FS kcs = 1.00E-04 $k_{cs} = 1.0E-06$ cm/s m/s k or k GS = 1.825 k_d or $k_{GS} = 1.8E-02$ m/s cm/s (b) Passive wedge P = 131.57 P (RC) = 82.2 mm/hr mm/hr thickness of cover soil = h = 0.77 m RC = 0.624 Actual runoff = 127.97 mm/hr length of slope measured along the geomembrane = L = 30 PERC = 3.60 m mm/hr soil slope angle beneath the geomembrane = $\beta = 16.4$ nn*/hr = 0.29 (rad.) 0.0001 FLUX ectual = 0.105 vertical height of the slope measured from the toe = H = 8.6m³/hr m FLUX _____ = 0.118 DLC = 1.1183 " Note: If there is only only one soil parallel submergence ratio = PSR = 0.01 above the geomembrane depth of the water surface measured from the geomembrane = h_{π} = 0.01 m treat it as the drainage layer. m³/sec q = 2.9E-05kN/m³ dry unit weight of the cover soil = $\gamma_{dry} = 20.4$ kN/m saturated unit weight of the cover soil = $\gamma_{\text{marg}} = 22.0$ h_{mo} = 0.01 m kN/m unit weight of water = γ_w = 9.81 PSR = 0.007 friction angle of the cover soil = $\phi = 25.0$ = 0.44 (rad.) Minimum interface friction angle = δ = 17.5 = 0.31 (rad.) Note: numbers in boxes are input values Constructed by Te-Yang Soong numbers in Italics are calculated values

..


		Civil &	Environme	ntal Consulta	ants, Inc.				-
PROJECT 2008	FINAL CO	OVER SH	ALLOW SLOPE	STABILITY AN	ALYSIS		ст	153	-121
DETERMINATI	ON OF INTE	RFACE ST	RENGTH AND G	EOCOMPOSITE T	RANSMISSIVITY	PAGE	17	OF	17
CENTRAL W	ASTE DISP	OSAL FA	CILITY			_			
MADE BY	DRL	DATE	10/28/15	CHECKED BY	AMR	DATE	10/3	30/15	
					•				•

Attachment E

Software Based Translational and Rotational Failure Surface Calculations

153-121-Final Cover SSA Narrative.doc

Trans.Static.Drained.sli

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

• • •

File Name: Trans.Static.Drained.sll Silde Modeler Version: 6.029 Project Title: SUDE - An Interactive Slope Stability Program

General Settings

Units of Measurement: Imperial Units Time Units: seconds Permeability Units: feat/second Failure Direction: Right to Left Data Output: Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Analysis Options

Analysis Mothods Used

Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50 Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 62.4 lbs/ft3

Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Trans.Static.Drained.sli

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (End Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

.

Property	Cap/Protective Cover	Geosynthetics	RSB	Intermediate Cover	Waste
Color					-
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [ibs/ft3]	130	100	130	130	90
Conesion (psf)	893	0	893	0	400
Friction Angle (deg)	25	17.5	25	27	33
Water Surface	None	None	None	None	None
Ru Value	0	0	0	0	0

...

.

Global Minimums

.

Method: spencer

FS: 2.017200 Add Location: 134.534, 1236.711 Left Slip Surface Endpoint: 113.970, 1127.487 Right Slip Surface Endpoint: 209.575, 1154.725 Resisting Moment=1.79714e+006 lb-ft Driving Moment=890907 lb-ft Resisting Horizontal Force=15399.8 lb Driving Horizontal Force=7634.26 lb Total Slice Ares=280.046 ft2

Global Minimum Coordinates

. *.* .. .

Method: spencer

X	Y,
113.97	1127.49
118.224	1125.74
180.395	1143.97
208.21	1152.22

Trans.Static.Orained.sll

÷.

209.575 1154.73

Valid / Invalid Surfaces

. . .

Method: spencer

Number of Valid Surfaces: 2390 Number of Invalid Surfaces: 2610

Error Codes:

Error Code -108 reported for 1074 surfaces Error Code -111 reported for 764 surfaces Error Code -112 reported for 772 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Slice Number	Width (h)	Weight [lbs]	Base Meterial	Base Cohesion (psf)	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress (psf)
1	3.6957	625.989	Cap/Protective Cover	893	25	580.877	1171.74	597.77	ò	597.77
2	0.557804	199.934	Geosynthetics	0	17.5	69.5647	140.326	445.055	0	445.055
3	4.14475	1567.82	Geosynthetics	0	17.5	54.8761	110.696	351.083	0	351.083
4	4.14475	1569.23	Geosynthetics	0	17.5	54.9251	110,795	351.398	0	351.398
5	4.14475	1570.64	Geosynthetics	0	17.5	54.9747	110.895	351.713	0	351.713
5	4.14475	1572.04	Geosynthetics	0	17.5	55.0238	110.994	352.028	0	352.028
7	4.14475	1573.45	Geosynthetics	0	17.5	55.0729	111.093	352.343	0	352.343
8	4.14475	1574.86	Geosynthetics	0	17.5	55.1224	111.193	352.657	0	352.657
9	4,14475	1576.26	Geosynthetics	0	17.5	55.1715	111.292	352.972	0	352.972
10	4.14475	1577.67	Geosynthetics	0	17.5	55.2206	111.391	353.287	0	353.287
11	4.14475	1579.08	Geosynthetics	0	17.5	55.2702	111,491	353.602	0	353.602
12	4.14475	1580.48	Geosynthetics	0	17.5	55.3193	111.59	353.919	0	353.919
13	4.14475	1581.89	Geosynthetics	0	17.5	\$5.3683	111.689	354.234	0	354.234
14	4.14475	1583.3	Geosynthetics	0	17.5	55.4179	111.789	354.549	0	354.549

Trans.Static.Drained.sli

15	4.14475	1584.7	Geosynthetics	0	17.5	55.467	111.888	354.864	0	354.864
16	4.14475	1586.11	Geosynthetics	0	17.5	55.5161	111.987	355.179	0	355.179
17	4.14475	1587.52	Geosynthetics	0	17.5	55.5656	112.097	355.493	0	355.493
18	4.63583	1773.99	Geosynthetics	0	17.5	55.4541	111.862	354.779	0	354.779
19	4.63583	1769.18	Geosynthetics	0	17.5	55,3034	111.558	353.817	o	353.817
20	4.63583	1764.37	Geosynthetics	0	17.5	55.1532	111,255	352.856	0	352.856
21	4.63583	1759.55	Geosynthetics	0	17.5	55.0025	110.951	351.892	0	351.892
22	4.63583	1754.74	Geosynthetics	0	17.5	54.8523	110.648	350.93	0	350,93
23	4.63583	1732.29	Geosynthetics	0	17.5	54.1503	109.232	346.44	0	345.44
24	0.066527	22.1497	Geosynthetics	0	17.5	30.8234	62.177	197.2	0	197.2
25	1.29857	211.998	Cap/Protective Cover	893	25	372.771	751.954	-302.474	o	-302.474
	16 17 18 19 20 21 22 23 24	16 4.14475 17 4.14475 18 4.63583 19 4.63583 20 4.63583 21 4.63583 22 4.63583 23 4.63583 24 0.066527	16 4.14475 1586.11 17 4.14475 1587.52 18 4.63583 1773.99 19 4.63583 1769.18 20 4.63583 1764.37 21 4.63583 1759.55 22 4.63583 1754.74 23 4.63583 1732.29 24 0.066527 22.1497	16 4.14475 1586.11 Geosynthetics 17 4.14475 1587.52 Geosynthetics 18 4.63583 1773.99 Geosynthetics 19 4.63583 1769.18 Geosynthetics 20 4.63583 1764.37 Geosynthetics 21 4.63583 1759.55 Geosynthetics 22 4.63583 1754.74 Geosynthetics 23 4.63583 1732.29 Geosynthetics 24 0.066527 22.1497 Geosynthetics 25 1.29857 211.998 Cap/Protective	16 4.14475 1586.11 Geosynthetics 0 17 4.14475 1587.52 Geosynthetics 0 18 4.63583 1773.99 Geosynthetics 0 19 4.63583 1769.18 Geosynthetics 0 20 4.63583 1764.37 Geosynthetics 0 21 4.63583 1759.55 Geosynthetics 0 22 4.63583 1754.74 Geosynthetics 0 23 4.63583 1732.29 Geosynthetics 0 24 0.066527 22.1497 Geosynthetics 0 25 1.29857 211.998 Cap/Protective 893	16 4.14475 1586.11 Geosynthetics 0 17.5 17 4.14475 1587.52 Geosynthetics 0 17.5 18 4.63583 1773.99 Geosynthetics 0 17.5 19 4.63583 1769.18 Geosynthetics 0 17.5 20 4.63583 1764.37 Geosynthetics 0 17.5 21 4.63583 1759.55 Geosynthetics 0 17.5 22 4.63583 1754.74 Geosynthetics 0 17.5 23 4.63583 1732.29 Geosynthetics 0 17.5 24 0.066527 22.1497 Geosynthetics 0 17.5 25 1.29857 211.998 Cap/Protective 893 25	16 4.14475 1586.11 Geosynthetics 0 17.5 55.5161 17 4.14475 1587.52 Geosynthetics 0 17.5 55.5656 18 4.63583 1773.99 Geosynthetics 0 17.5 55.4541 19 4.63583 1769.18 Geosynthetics 0 17.5 55.3034 20 4.63583 1764.37 Geosynthetics 0 17.5 55.1532 21 4.63583 1759.55 Geosynthetics 0 17.5 55.0025 22 4.63583 1754.74 Geosynthetics 0 17.5 54.8523 23 4.63583 1732.29 Geosynthetics 0 17.5 54.1503 24 0.066527 22.1497 Geosynthetics 0 17.5 30.8234 25 1.29857 211.998 Cap/Protective 893 25 372.771	16 4.14475 1586.11 Geosynthetics 0 17.5 55.5161 111.987 17 4.14475 1587.52 Geosynthetics 0 17.5 55.5656 112.097 18 4.63583 1773.99 Geosynthetics 0 17.5 55.4541 111.862 19 4.63583 1769.18 Geosynthetics 0 17.5 55.3034 111.558 20 4.63583 1764.37 Geosynthetics 0 17.5 55.1532 111.255 21 4.63583 1759.55 Geosynthetics 0 17.5 55.0025 110.951 22 4.63583 1754.74 Geosynthetics 0 17.5 54.8523 110.648 23 4.63583 1732.29 Geosynthetics 0 17.5 54.1503 109.232 24 0.066527 22.1497 Geosynthetics 0 17.5 30.8234 62.177 25 1.29857 211.998 Cap/Protective 893 2	16 4.14475 1586.11 Geosynthetics 0 17.5 55.5161 111.987 355.179 17 4.14475 1587.52 Geosynthetics 0 17.5 55.5656 112.087 355.493 18 4.63583 1773.99 Geosynthetics 0 17.5 55.4541 111.862 354.779 19 4.63583 1769.18 Geosynthetics 0 17.5 55.3034 111.558 353.817 20 4.63583 1764.37 Geosynthetics 0 17.5 55.1532 111.255 352.856 21 4.63583 1759.55 Geosynthetics 0 17.5 55.0025 110.951 351.892 22 4.63583 1754.74 Geosynthetics 0 17.5 54.8523 110.648 350.93 23 4.63583 1732.29 Geosynthetics 0 17.5 54.1503 109.232 346.44 24 0.066527 22.1497 Geosynthetics 0 17.5 30.8234 62.177 197.2 25 1.29857 211.998	16 4.14475 1586.11 Geosynthetics 0 17.5 55.5161 111.987 355.179 0 17 4.14475 1587.52 Geosynthetics 0 17.5 55.5656 112.087 355.493 0 18 4.63583 1773.99 Geosynthetics 0 17.5 55.4541 111.862 354.779 0 19 4.63583 1769.18 Geosynthetics 0 17.5 55.3034 111.558 353.817 0 20 4.63583 1764.37 Geosynthetics 0 17.5 55.1532 111.255 352.856 0 21 4.63583 1759.55 Geosynthetics 0 17.5 55.0025 110.951 351.892 0 22 4.63583 1754.74 Geosynthetics 0 17.5 54.8523 110.648 350.93 0 23 4.63583 1732.29 Geosynthetics 0 17.5 54.1503 109.232 346.44 0 24 0.066527 22.1497 Geosynthetics 0 17.5 30.823

Interslice Data

Global Minimum Query (spencer) - Sefety Fector: 2.0172

Slice - Number -	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Intersilce Shear Force	Intersilco Force Angle
Number .	[作]	(e)	[lbs]	(lbs)	[degrees]
1	113.97	1127.49	0	0	0
2	117.666	1125.97	3050.2	703.229	12.9828
Э	118.224	1125.74	3190.95	735.68	12.9828
4	122.368	1126.95	2991.13	689.61	12.9828
5	126.513	1128.17	2791.12	643.499	12.9828
6	130.658	1129.39	2590.94	597.346	12.9828
7	134.803	1130.6	2390.58	551.152	12.9828
8	138.947	1131.82	2190.04	504.917	12.9828
9	143.092	1133.03	1989.32	458.64	12.9828
10	147.237	1134.25	1788.42	412.322	12.9827
11	151.382	1135.46	1587.34	365.963	12.9828
12	155.526	1135.58	1386.08	319.562	12.9827
13	159.671	1137.9	1184.64	273.12	12.9827
14	163.816	1139.11	983.021	226.637	12.9828
15	167.951	1140.33	781.224	180.113	12.9828
16	172.105	1141.54	579.248	133,547	12.9828
17	176.25	1142.76	377.092	86.9393	12.9828
18	180.395	1143.97	174.757	40.2906	12.9828
19	185.031	1145.35	-\$6.1261	-12.94	12.9828
20	189.667	1146.72	-286.383	-66.0261	12.9828
21	194.302	1148.09	-516.014	-118.968	12.9828
22	198.938	1149.47	-745.018	-171.765	12.9828
23	203.574	1150.84	-973.397	-224.418	12.9828
Z4	208.21	1152.22	-1198.85	-276.398	12.9828
25	208.276	1152.34	-1220.91	-281.484	12.9828
26	209.575	1154.73	0	0	0

Trans.Static.Drained.sti

•

•

.

.

.

	222.767 1153.45
List Of Coordinates	207.32 1154.54
	159.352 1140.83
	111.384 1126.73
Block Search Window	95.9366 1128.22
	47.9683 1114.11
	0 1100
164.974 1139.88	
164.974 1139.36	
207.61 1151.9	Material Boundary
207.561 1152.41	
	8.86002 1100
	96.1779 1125.68
Block Search Window	
	111.625 1124.19
111.625 1124.19	207.561 1152.41
111.673 1123.68	223.008 1150.92
164.974 1139.36	318.704 1179.06
164.974 1139.88	
1003/4 11300	Material Boundary
Block Search Window	X Y .
	10.632 1100
, j j j j j j j j j j j j j j j j j j j	96.2262 1125.17
207.561 1152.41	111.573 1123.68
207.61 1151.9	207.61 1151.9
210.857 1151.59	223.057 1150.41
210.857 1152.09	318.704 1178.54
External Boundary	Manual Developer
	Material Boundary
X Y	
7.6905 1100	15.948 1100
8.86002 1100	96.371 1123.65
10.632 1100	111.818 1122.15
15.948 1100	207.754 1150.38
19.492 1100	223.201 1148.89
159.352 1100	318.704 1176.98
318.704 1100	
318.704 1140.83	
318.704 1175.94	Material Boundary
318.704 1176.98	
318.704 1178.54	19.492 1100
318,704 1179.06	96.4675 1122.64
318.704 1179.41	
318.704 1181.67	111.914 1121.15
270,735 1167.56	207.851 1149.37
	223.298 1147.88
Irans.Static.Orained.sl	Trans.Static Orained.Sii
	1

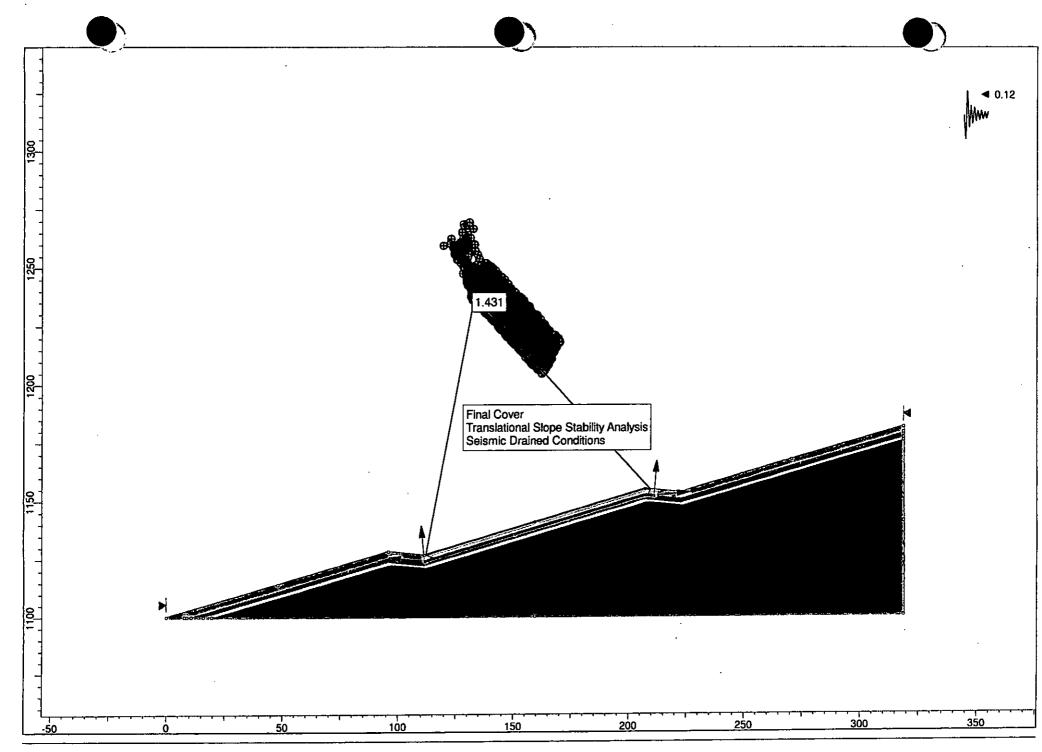
÷

•

.

· · ·

. .


· ·

. ,

318.704 1175.94

.

Trans.Static.Drained.sll

Trans.Seismic.Drained.sli

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

File Name : Trans.Seismic.Drained.sli Silde Modeler Version: 6.029 Project Title: SLIDE - An interactive Slope Stability Program

General Settings

Units of Measurement: Imperial Units Time Units: seconds Permeability Units: feet/second Failure Direction: Right to Left Data Output: Standard Maximum Material Properties: 20

Maximum Support Properties: 20

Analysis Options

, i zine de la secta de la

Analysis Methods Used

Spencer .

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50 Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 62.4 ibs/ft3 Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Trans.Seismic.Drained.sli

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 85 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Property	Cep/Protective Cover	Geosynthetics	RSB	Intermediate Cover	Weste
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [ibs/ft3]	130	100	130	130	90
Cohesion (psf)	893	0	893	0	400
Friction Angle (deg)	25	17.5	25	27	33
Water Surface	None	None	None	None	None
Ru Value	0	0	0	0	O

Global Minimums

فالتسابع والمتعاري والمتعاري

Method: spencer

FS: 1.430780 Axis Location: 133.211, 1238.295 Left Slip Surface Endpoint: 112.227, 1126.974 Right Slip Surface Endpoint: 209.677, 1154.715 Resisting Moment=1.87284e+006 (b-ft DrVing Moment=1.30396e+006 (b-ft Resisting Horizontal Force=15724.1 (b) DrVing Horizontal Force=10589.9 (b) Total Slice Area=286.275 ft2

Global Minimum Coordinates

٧

Method: spencer

_____×

Trans.Selsmic.Drained.sll

. •

112.227 1126.97 116.48 1125.23 171.356 1141.31 208.312 1152.21 209.677 1154.72

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces: 3735 Number of Invalid Surfaces: 1265

Error Codes:

Error Code -108 reported for 262 surfaces Error Code -111 reported for 88 surfaces Error Code -112 reported for 915 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+ten(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Silce Data

Global Minimum Query (spencer) - Safety Factor: 1.43078

Silce Number	Width [ft]	Weight [Übs]	Base Material ,	Base Cohesion {pst}	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength (psf)	Base Normal Stress (psf)	Pore Pressure (psf)	Effective Normal Stress [psf]
1	3. 69 57	625.989	Cap/Protective Cover	893	25	933.039	1334.97	947.817	0	947.817
2	0.557804	199.934	Geosynthetics	0	17.5	106.045	151.728	481.218	0	481.218
3	4.22119	1596.85	Geosynthetics	0	17.5	73.8919	105.723	335.311	0	335.311
4	4.22119	1598.5	Geosynthetics	. 0	17.5	73.9687	105.833	335.658	0	335.658
S	4.22119	1600.15	Geosynthetics	0	17.5	74.0449	105.942	336. 006	0	336.005
6	4.22119	1601.81	Geosynthetics	0	17.5	74.1218	106.052	336.352	0	336.352
7	4.22119	1603.46	Geosynthetics	0	17.5	74.198	106.161	336.7	0	336,7
8	4,22119	1605.11	Geosynthetics	0	17.5	74.2749	106.271	337.047	0	337.047
9	4.22119	1606.77	Geosynthetics	0	17.5	74.3511	106.38	337.395	0	337.395
10	4.22119	1508.42	Geosynthetics	0	17.5	74.4272	106.489	337.741	0	337.741

Trans.Seismic.Drained.sli

1	1	4.22119	1610.07	Geosynthetics	0	17.5	74.5041	106.599	338.089	0	338.089
1	2	4.22119	1611.73	Geosynthetics	0	17.5	74.5803	106.708	338.436	0	338.436
1	3	4.22119	1613,38	Geosynthetics	0	17.5	74,6572	106.818	338.782	٥	338.782
1	4	4,22119	1615.03	Geosynthetics	0	17.5	74.7334	106.927	339.13	٥	339.13
1	5	4.22119	1616.69	Geosynthetics	0	17.5	74.8102	107.037	339.478	0	339.478
1	6	4.61952	1769.5	Geosynthetics	0	17.5	74.7655	106.973	339.275	0	339.275
1	7	4.61952	1768.21	Geosynthetics	0	17.5	74.711	106,895	339.028	0	339.028
1	8	4.61952	1766.92	Geosynthetics	0	17.5	74.6565	106.817	338.779	Ð	338,779
1	9	4.61952	1765.62	Geosynthetics	0	17.5	74.602	106.739	338.532	0	338.532
2	0	4.61952	1764.33	Geosynthetics	0	17.5	74.5468	106.66	338.283	0	338.283
z	1	4.61952	1763.04	Geosynthetics	0	17.5	74.4922	106.582	338.035	0	338.035
2	2	4.61952	1761.74	Geosynthetics	0	17.5	74.4377	106.504	337.788	0	337.788
2	3	4,61952	1738.77	Geosynthetics	0	17.5	73,4669	105.115	333.382	0	333.382
2	4 0	0.066527	22.1497	Geosynthetics	0	17.5	36.6095	52.3801	166.129	0	166.129
2	5	1.29857	211.998	Cap/Protective Cover	893	25	499.233	714.293	-383.238	D	-383.238

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.43078

Slice	x	. ¥	Interstice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Penninger	[作]	(ft)	(lbs)	(ībs)	(degrees)
1	112.227	1126.97	0	0	0
2	115.923	1125.46	4809.39	1467.39	16.9674
3	116.48	1125.23	4954.82	1511.77	16.9675
4	120.702	1126.46	4659.82	1421.76	16.9675
5	124.923	1127.7	4364.51	1331.66	16.9675
6	129.144	1128.94	4068.9	1241.46	16.9674
7	133.365	1130.18	3772,99	1151.18	16.9675
8	137.586	1131.41	3476.76	1060.8	16.9676
9	141.807	1132.65	3160.24	970,323	16.9675
10	146.029	1133.89	2883.4	879.756	16.9675
11	150,25	1135.13	2586.27	789.097	16.9675
12	154.471	1136.36	2288,82	698.344	16.9675
13	158.692	1137.6	1991.08	607.498	16.9675
14	162.913	1138.84	1693.02	516.558	16.9675
15	167.135	1140.08	1394.66	425.526	16.9675
16	171.356	1141.31	1096	334.4	16.9674
17	175.975	1142.68	766.783	233.953	16.9675
18	160.595	1144.04	437.809	133.58	16.9675
19	185.214	1145.4	109.075	33,2799	16.9675
20	189.834	1145.76	-219.418	-66.9467	16.9675
21	194.453	1148.12	-547.671	-167.1	16.9675
22	199.073	1149,48	-875.683	-267.18	16.9675
·					

Trans.Seismic.Drained.sli

.1

.

23	203.692	1150.85	-1203.45	-367,186	16.9675	
24	208.312	1152.21	-1526.95	-465.889	16.9675	
25	208.378	1152.33	-1547.49	-472.154	16.9674	
26	209.677	1154.72	0	0	0	

List Of Coordinates

Block Search	Window
---------------------	--------

	X	¥
	111.625	1124.19
ļ	111.673	1123.68
	150.812	1135.2
	150.812	1135.72

Block Search Window

X	Ŷ
150.812	1135.72
150.812	1135.2
207.61	1151.9
207.561	1152.41

Block Search Window

X	¥
207.561	1152.41
207.61	1151.9
211.384	1151.54
211.384	1152.04

External Boundary

x	۲
7.6905	1100
8.85002	1100
10.632	1100
15.948	1100
19.492	1100
159.352	1100
318.704	1100
318.704	1140.83
318.704	1175.94
318.704	1176.99

Trans.Seismic.Drained.sli

318.704	1179.06
318.704	1179.41
318.704	1181.67
270.735	1167.56
222.767	1153.45
207.32	1154.94
159.352	1140.83
111.384	1126.73
95.9366	1128.22
47.9683	1114.11
0	1100

Material Boundary

¥
1100
1125.68
1124.19
1152.41
1150.92
1179.05

Material Boundary

i	X	Y
	10.632	1100
	96.2262	1125.17
	111.673	1123.68
	207.61	1151.9
	223.057	1150.41
	318.704	1178.54

Material Boundary

	x	٧	
	15.948	1100	
	96.371	1123.65	İ.
	111.819	1122.16	
·	207.754	1150.38	
	223.201	1148.89	
	318,704	1176.98	

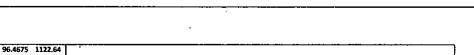
Material Boundary

XY

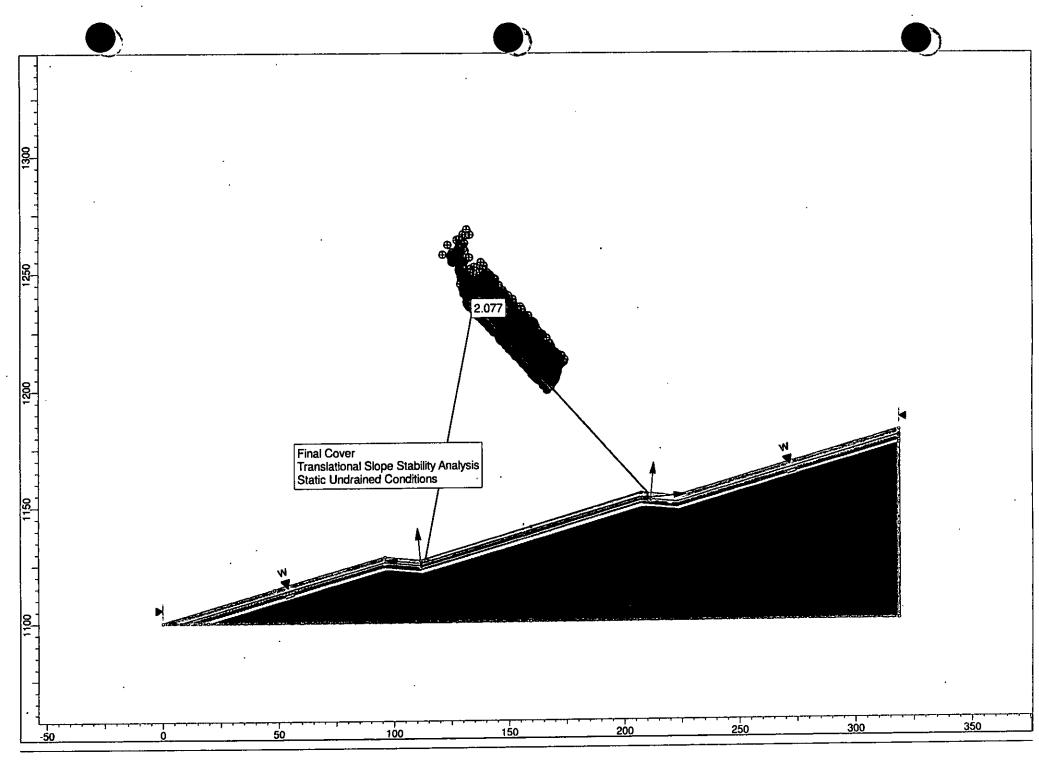
19.492 1100

. . *

.


Trans.Scismic.Drained.sll

. .



111.914 1121.15 207.851 1149.37 223.298 1147.88 318.704 1175.94

. ÷

. .

Trans.Selsmic.Drained.s/l

Trans.Static.UnDrained.sli

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

File Name : Trans.Static. UnDrained.sli Slide Modeler Version: 6.029 Project Title: SLIDE - An Interactive Slope Stability Program

General Settings

Units of Measurement: Imperial Units Time Units: seconds Permeability Units: feet/second Fallure Direction: Right to Left Oats Output: Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Analysis Options

Analysis Methods Used

Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50 Check malpha < 0,2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight: 62.4 lbs/ft3

Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Trans.Static,UnDrained.sli

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined

....

Material Properties

Property	Cap/Protective Cover	Geosynthetics	RSB	Intermediate Cover	Waste
Color -					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	130	100	130	130	90
Cohesion (psf)	893	0	893	· 0	400
Friction Angle (deg)	25	17.5	25	27	33
Water Surface	Water Table	None	None	None	None
Hu Value	1				
Ru Value		0	0	0	. 0

- --

- - -

.. . ..

Global Minimums

Method: spencer

FS: 2.076870 Axis Location: 134.780, 1237.885 Left Silp Surface Endpoint: 113.601, 1127.378 Right Silp Surface Endpoint: 210.478, 1154.638 Resisting Moment=1.93768e+006 lb-ft Driving Moment=932981 lb-ft Resisting Horizontal Force=16856.6 lb Driving Horizontal Force=8121.17 lb Total Silce Aree=273.781 ft2

Global Minimum Coordinates

Method: spencer

X	Y
113,601	1127.38
118.149	1125.76
196.524	1148.81

Trans.Static.UnDrained.sli

...

209.083 1152.86 210.478 1154.64

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces: 3139 Number of Invalid Surfaces: 1861

Error Codes:

Error Code -108 reported for 438 surfaces Error Code -111 reported for 616 surfaces Error Code -112 reported for 807 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (spencer) - Safety Factor: 2.07687

Silce Number	Width [ft]	Weight [lbs]	Base Material	Base Cohesion (psf)	Base Friction Angle (degrees)	Shear Stress (psf)	Shear Strength (psf]	Base Normal Stress (psf)	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.01518	680.103	Cap/Protective Cover	893	25	541.412	1124.44	496.329	0	496.329
2	0.532545	189.611	Geosynthetics	0	17.5	63,5268	131.937	418.453	0	418.453
3	4,35416	1625.56	Geosynthetics	0	17.5	52.8979	109.862	348.435	0	348.436
· 4	4.35416	1625.63	Geosynthetics	0	17.5	52.8998	109.866	348.452	0	348.452
5	4.35416	1625.69	Geosynthetics	0	17.5	52,9022	109.871	348.465	0	348.465
6	4.35416	1625.76	Geosynthetics	0	17.5	52,9041	109.875	348.48	0	348.48
7	4.35416	1625.83	Geosynthetics	0	17.5	52.9061	109.879	348.493	0	348.493
8	4.35416	1625.89	Geosynthetics	0	17.5	52.9085	109.884	348.507	0	348.507
9	4.35416	1625.96	Geosynthetics	0	17.5	52.9104	109.888	348.522	0	348.522
10	4.35416	1626.02	Geosynthetics	0	17.5	52.9128	109.893	348.535	0	348.535
11	4.35416	1626.09	Geosynthetics	0	17.5	52.9147	109.897	348.551	0	348.551
12	4,35416	1626.16	Geosynthetics	0	17.5	52.9171	109.902	348.564	0	348.564
13	4.35416	1626.22	Geosynthetics	0	17.5	52.9191	109.906	348.577	0	348.577

Trans, Static, UnDrained.sli

14	4.35416	1626.29	Geosynthetics	0	17.5	52.9215	109.911	348.593	0	348.593
15	4.35416	1626.35	Geosynthetics	0	17.5	52.9234	109.915	348,606	0	348.608
16	4.35416	1626,42	Geosynthetics	0	17.5	S2.9258	109.92	348.621	0	348.621
17	4.35416	1626.49	Geosynthetics	0	17.5	52.9277	109.924	348.634	0	348.634
18	4.35416	1626.55	Geosynthetics	0	· 17.5	52.9301	109.929	348.65	Q	348.6
19	4.35416	1626.62	Geosynthetics	0	17.5	52.9321	109.933	348.663	0	348,663
20	4.35416	1626.68	Geosynthetics	0	17.5	52.934	109.937	348.676	0	348.67
21	3.71206	1367.66	Geosynthetics	0	17.5	51.7461	107.47	340.853	0	340.853
22	3.71206	1329.33	Geosynthetics	0	17.5	50.2959	104.458	331.298	0	331.29
23	3.71206	1288.12	Geosynthetics	0	17.5	48.7363	101.219	321.028	0	321.02
24	1.42263	409.455	Cap/Protective Cover	893	25	476.904	990.468	211.137	2.11496	209.02
25	1.39573	173.854	Cap/Protective Cover	893	25	378.321	785.723	-230.055	0	-230.05

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 2.07687

.

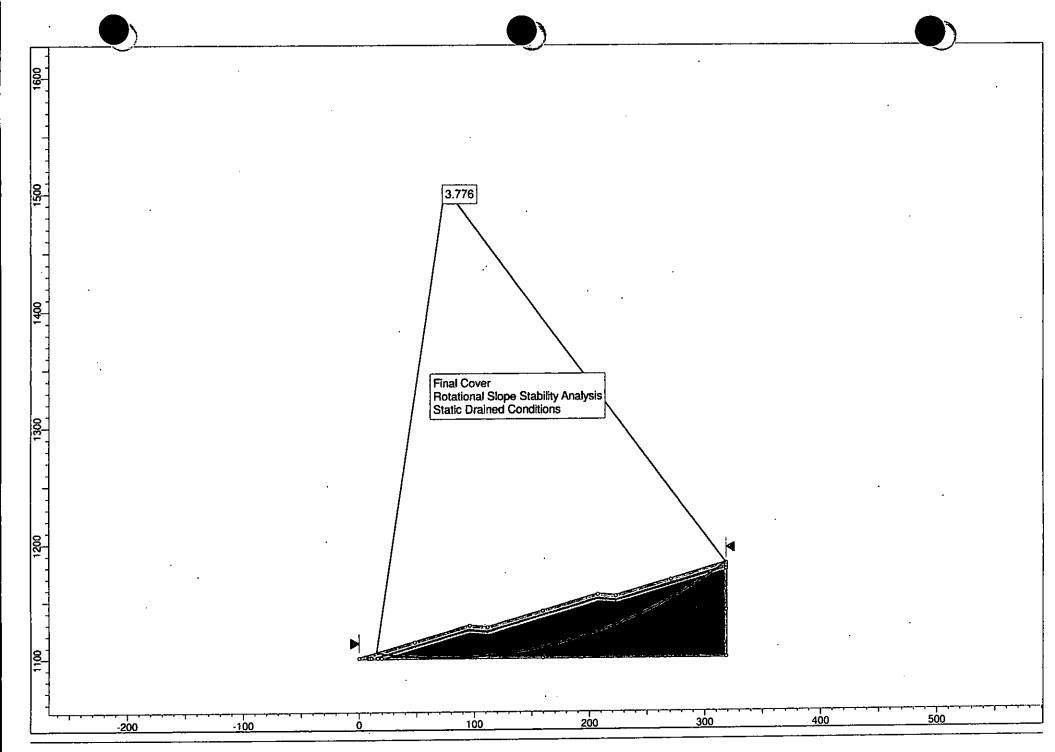
Silce Number	X coordinate {ft}	Y coordinate - Bottom [ft]	Intersilce Normal Force {ibs]	Intersilce Shear Force (ibs)	Intersice Force Angle [degrees]
1	113.601	1127.38	0	0	0
2	117.617	1125.95	2880.77	542.171	10,6586
3	118.149	1125.76	2993.68	563,421	10.6586
4	122.503	1127.04	2777.8	522.792	10.6586
5	126.857	1128.33	2561.91	482.161	10.6586
6	131.212	1129.61	2346.02	441.529	10.6586
7	135.566	1130.89	2130.11	400.894	10.6586
8	139.92	1132.17	1914.2	360.259	10.6586
9	144.274	1133.45	1698.27	319.621	10.6585
10	148.628	1134.73	1482.34	278.982	10.6586
11	152.982	1136.01	1266.4	238.941	10.6586
12	157.337	1137.29	1050.45	197.699	10.6586
13	161.691	1138.57	834.495	157.055	10.6586
14	166.045	1139.85	618.529	115.409	10.6586
15	170.399	1141.13	402.554	75,7621	10.6586
16	174.753	1142.41	186.57	35.1131	10.6586
17	179.107	1143.69	-29.4229	-5.5375	10.6586
18	183.461	1144.97	-245.425	-46,1898	10.6586
19	187.816	1146.25	-461.435	-86.8437	10.6586
20	192.17	1147.53	-677.454	-127.499	10.6585
21	196.524	1148.81	-893.482	-168.156	10.6585
22	200.236	1150.01	-1108.76	-208.673	10.6586
23	203.948	1151.2	-1318.01	-248.054	10.6586
24	207.66	1152.4	-1520.77	-285.214	10.6586
25	209.083	1152.86	-939.121	-176.746	10.6586

Trans.Static.UnDrained.sli

-

26 210.478 1154.54 0 0 0	19.492 1100
	159.352 1100
	318,704 1100
List Of Coordinates	318.704 1140.83
	318.704 1175.94
Water Table	318,704 1176.98
X Y	318.704 1178.54
X Y 7.6905 1100	318.704 1179.06
96.146 1126.02	318.704 1179.41
111.593 1124.53	318.704 1181.67
207.53 1152.74	270.735 1167.56
222.977 1151.25	222.767 1153.45
318.704 1179.41	207.32 1154.94 159.352 1140.83
	111.384 1126.73
	j 95.9366 1128.22
Block Search Window	47.9683 1114.11
	0 1100
156.378 1138.52	
156.378 1136.83	
207.61 1151.9	Material Boundary
207.449 1153.24	XY
	8.86002 1100
Block Search Window	96.1779 1125.68
	111.625 1124.19
X Y 111.673 1125.37	207.561 1152.41
111.673 1123.68	223.008 1150.92
156.378 1136.83	318.704 1179.06
156.378 1138.52	;
	Material Boundary
Block Search Window	10.632 1100
	96.2262 1125.17
207.449 1153.24	111.673 1123.68
207.61 1151.9	207.61 1151.9
211.311 1151.54	223.057 1150.41
211.798 1152.85	318.704 1178.54
External Boundary	Material Boundary
	X. Y.
7.6905 1100	15,948 1100
8.86002 1100	96.371 1123.65
10.632 1100	111,818 1122.16
15.948 1100	207.754 1150.38
Trans. Static UnDrained.sli	Trans.Static.UnDrained.cli
	Í de la companya de l

•



. 223.201 1148.89 . . 318.704 1176.98 Material Boundary X . Y 19.492 1100 96.4675 1122.64 111.914 1121.15 207,851 1149.37 223.298 1147.88 318.704 1175.94

..

Trans.Static.UnDrained.sll

. .

Rot.Static.Drained.sli

aineo.sii

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: Rot.Static.Drained.sli Silde Modeler Version: 6.029 Project Title: SUDE - An Interactive Slope Stability Program

General Settings

.

Units of Measurement: Imperial Units Time Units: seconds Permeability Units: feet/second Failure Direction: Right to Left Data Output: Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Analysis Options

Analysis Methods Used

Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50 Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen iteration: Yes

Groundwater Analysis

Groundwater Method; Water Surfaces Pore Fluid Unit Welght; 62,4 lbs/ft3 Advanced Groundwater Method; None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Rot,Static.Drained.sli

Surface Type: Circular	
Search Method: Auto Refina Sear	ch
Divisions along slope: 10	
Circles per division: 10	
Number of Iterations: 10	
Divisions to use in next iteration:	50%
Composite Surfaces: Disabled	
Minimum Elevation: Not Defined	
Minimum Death: Not Defined	

Material Properties

Property	Cap/Protective Cover	Geosynthetics.	RS0 *	Intermediate Cover-	Weste
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight (ibs/ft3)	130	100	130	130	90
Cohesion (psf)	893	0	893	0	400
Friction Angle (deg)	25	17.5	25	27	33
Water Surface	None	None	None	None	None
Ru Value	0	0	0	0	0

.....

÷ .

Giobal Minimums

Method: spencer

FS: 3.775990 Center: 74.610, 1505.475 Radius: 405.449 Left Silp Surface Endpoint: 15.046, 1104.425 Right Silp Surface Endpoint: 318.557, 1181.625 Resisting Moment=2.23273e+008 lb-ft Driving Moment=5.91296+007 lb-ft Resisting Horizontal Force=139257 lb Driving Horizontal Force=139257 lb Total Silce Are=6512.77 ft2

Valid / Invalid Surfaces

a construction of the second
Method: spencer

Number of Valid Surfaces: 1991 Number of Invalid Surfaces: 0

Slice Data

Rot_Static_Drained_sll

--- --

- ---

Silca Number	Width (ft)	Weight [ibs]	Base Material	Base Cohesion , (psf)	Base Friction Angle {degrees}	Shoar Stress (psf)	Shear Strength (psf)	Base Normal Stress (psf)	Pore Pressure [psf]-	Effective "Normal" Stress -[psf]
i	5.99028	1014.65	Cap/Protective Cover	893	25	270.518	1021.48	275,514	0	275.514
2	1.22379	446.47	Geosynthetics	0	17.5	32.3507	122.156	387.43	0	387.4
3	3.72611	1835.16	RSB	893	25	312.762	1180.99	617.593	0	617.593
4	2.53168	1675.71	Intermediate Cover	0	27	96.1811	363,179	712.778	0	712.77
5	16.2726	16498,5	Waste	400	33	300.552	1134.88	1131.62	0	1131.6
6	16.2726	25266.8	Waste	400	33	394.967	1491.39	1680.59	0	1680.5
7	16.2726	33073.4	Waste	400	33	475.674	1796.14	2149.87	0	2149.8
6	16.2726	39922.4	Waste	400	33	543.367	2051.75	2543.48	0	2543.4
9	16.2726	42289,2	Waste	400	33	560.947	2118.13	2645.68	0	2645.6
10	15.2726	41928.6	Waste	400	33	549.196	2073.76	2577.37	0	2577.3
11	15.2726	45854.9	Waste	400	33	582.11	2198.04	2768.75	0	2768.7
12	16.2726	48817.7	Waste	400	33	604.019	2280.77	2896.13	0	2896.1
13	16.2726	50770.1	Waste	400	33	614.898	2321.85	2959.4	0	2959.
14	16.2726	51685.3	Waste	400	33	614.943	2322.02	2959.66	0	2959.6
15	16.2726	51528.6	Waste	400	33	604.279	2281.75	2897.64	0	2897.6
16	16,2726	45394.1	Waste	400	33	536.567	2026.07	2503.92	0	2503.9
17	16.2726	38993.9	Waste	400	33	468.28	1768.22	2106.87	0	2106.8
18	16.2726	35338.6	Waste	400	33	427.271	1613.37	1858.43	0	1868.4
19	16.2726	30383.9	Waste	400	33	375.602	1418.27	1568	0	156
20	16.2726	24038.3	Waste	400	33	313.157	1182.48	1204.91	0	1204.9
21	16.2726	16189.3	Weste	400	33	239.77	905.368	778.197	0	778,19
22	2.58731	1712.53	Intermediate Cover	0	27	73.4316	277.277	544.187	0	544.18
23	3,74791	1845.9	RSB	893	25	274,627	1036.99	308.785	0	308,78
24	1.2161	443,664	Geosynthetics	0	17.5	25.4174	95.9759	304.396	0	304.39
25	5.8536	991.5	Cap/Protective Cover	893	25	241.159	910.613	37.772	0	37.77

Interslice Data

.

Silce Number	X coordinata _[ft]	Y coordinate - Bottom (ft)	Intersiice Normal Force `[lbs]	Intersilce, Shear Force (ibs) [,]	 Intersilco Fòrce Angle (degrees) 	
1	15.0461	1104.43	0	0	0	
2	21.0364	1103.58	1852.46	408,211	12.4272	
3	22.2602	1103.42	1954.51	430.698	12.4272	
4	25.9863	1102.95	3408.29	751.055	12.4272	
5	28.518	1102.65	3863.93	851.461	12.4272	
6	44.7905	1101.12	10484.8	2310.44	12.4271	
7	61.0631	1100.25	18374,5	4049.04	12,4272	

.

Rot.Static.Drained.sii

8	77.3357	1100.04	26579.2	5857.03	12.4272
9	93,6083	1100.47	34308.7	75 6 0.31	12.4272
10	109.881	1101.56	40545.2	8934.59	12.4272
11	126.153	1103.32	44951.9	9907.86	12.4272
12	142.426	1105.74	47724.8	10516.7	12.4272
13	158.699	1108.84	48560.9	10700.9	12.4271
14	174.971	1112.64	47312	10425.7	12.4271
15	191.244	1117.15	43936.5	9681.89	12.4271
16	207.516	1122.43	38512.1	8485.58	12.4272
17	223.789	1128.47	32118.2	7077.61	12.4272
18	240.061	1135.32	25298.5	5574.82	12.4271
19	256.334	1143.03	17840,5	3931.36	12.4272
20	272.606	1151.66	10423.6	2296.95	12.4271
21	288.879	1161.27	3937.39	867.648	12.4272
· 22	305.152	1171.95	-473.514	-104,344	12.4271
23	307.739	1173.75	-1264.94	-278.743	12.4271
24	311.487	1176.42	-1059.2	-233.406	12.4271
25	312.703	1177.3	-1295.82	-285.548	12.4271
26	318.557	1181.63	0	0	0

.

.

List Of Coordinates

External Boundary					
	x	۲			
	7.6905	1100			
	8,86002	1100			
	10.632	1100			
	15.948	1100			
	19.492	1100			
	159.352	1100			
	318.704	1100			
	318.704	1140.83			
	318.704	1175.94			
	318.704	1176.98			
	318,704	1178.54			
	318.704	1179.05			
	318.704	1179.41			
	318.704	1181.67			
	270.735	1167.56			
	222.767	1153.45			
		1154.94			
		1140.83			
		1126.73			
	95.9366	1128.22			

.

Rot.Static.Drained.sli

...

.

47.9683 1114.11 0 1100 Material Boundary .x Y 8.86002 1100

96.1779 1125.68 111.625 1124.19 207.561 1152.41 223.008 1150.92 318.704 1179.06

Material Boundary

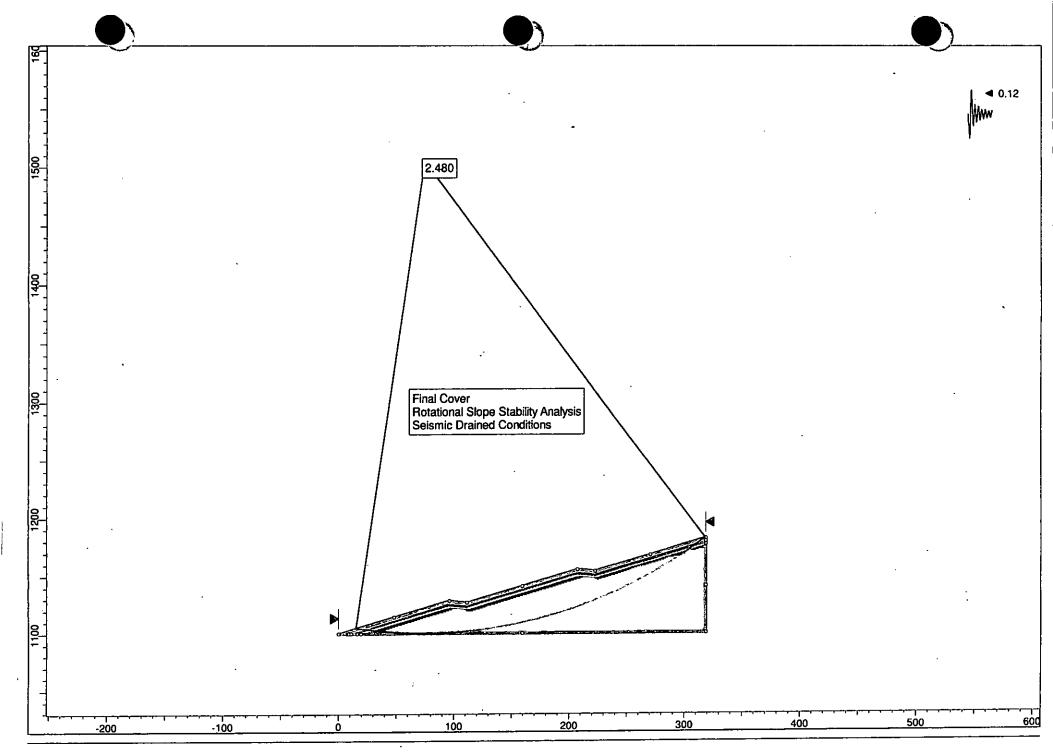
X	Y
10.632	1100
96.2262	1125.17
111.673	1123.68
207.61	1151.9
223.057	1150.41
19 704	1178.54

Material Boundary

X	٧
15.948	1100
96.371	1123.65
111.818	1122.16
207.754	1150.38
223.201	1148.89
318.704	1176.98

Material Boundary

X	Y
19.492	1100
6.4675	1122.64
11.914	1121.15
07.851	1149,37
23.298	1147.88
	1175.94


Rot.Static.Orained.sti

. .

.

• • •

.

Rot.Seismic.Drained.sli

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: Rot.Seismic.Drained.sll Silde Modeler Version: 6.029 Project Title: SLIDE - An Interactivo Slope Stability Program

General Settings

Units of Measurement: Imperial Units Time Units: seconds Permeability Units: feet/second

Fallure Direction: Right to Left Data Output: Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Analysis Options

Analysis Methods Used

Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50 Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 62.4 lbs/ft3 Advanced Groundwater Method: None

Random Numbers 🔗

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Rot_Selsmic_Drained_sli

. -

Surface Type: Circular Search Method: Auto Refina Search Dhysions along slope: 10 Circles per division: 10 Number of iterations: 10 Dhysions to use in next iteration: 50% Composite Surfaces: Disabled Minimum Elevation: Not Defined Minimum Depth: Not Defined

** *-

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

in the second
Property	Cap/Protective Cover	Geosynthetics	RSB	Intermediate Cover	Waste
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight (lbs/ft3)	130	100	130	130	90
Cohesion (psf)	893	0	893	0	400
Friction Angle (deg)	25	17.5	25	27	33
Water Surface	None	None	None	None	None
Ru Value	0	0	0	0	0

- - --

Global Minimums

. .

Method: spencer

FS: 2.479780 Center: 74.610, 1505.475 Radius: 405.449 Left Silp Surface Endpoint: 15.046, 1104.425 Right Silp Surface Endpoint: 318.557, 1181.625 Resisting Moment=2.18901e+008 lb-ft Driving Moment=8.82746e+007 lb-ft Resisting Morizontal Force=208126 lb Driving Horizontal Force=208126 lb Total Sice Arez=6512.77 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces: 2097

Rot_Seismic_Drained.sli

Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (spencer) - Safety Factor: 2.47978

Slice Number	Width [ft]	Weight [ibs]	Base Material	Base Cohesion (psf)	Ease Friction Angle (degrees)	Shear Stress [psf]	Shear Strength (psf)	Base Normal Stress [psf]	Pore Pressure (psf)	Effective Normal Stress [ppf]
1	5.99028	1014.65	Cap/Protective Cover	893	25	432.667	1072.92	385.835	0	385.835
2	1.22379	446.47	Geosynthetics	0	17.5	49.656	123.136	390.536	0	390,536
3	3.72611	1835.16	RSB	893	25	497.737	1234.28	731.875	0	731.875
4	2.53168	1675.71	Intermediate Cover	0	27	150.39	372,934	731.922	0	731.92
5	16.2726	16498.5	Waste	400	33	479.803	1189.81	1215.2	0	1216.
6	16.2725	25266.8	Waste	400	33	623.088	1545.12	1763.33	0	1763.3
7	16.2726	33073.4	Waste	400	33	742.429	1841.06	2219.03	0	2219.0
8	16.2726	39922.4	Waste	400	33	839.671	2082.2	2590.36	0	2590.3
9	16.2726	42289.2	Waste	400	33	859.205	2130.64	2664.95	0	2664.9
10	16.2726	41928.6	Waste	400	-33	834.425	2069.19	2570.33	. 0	2570.3
11	16.2726	45854.9	Waste	400	33	876.731	2174.1	2731.68	0	2731.8
12	16.2726	48817.7	Waste	400	33	902.116	2237.05	2828.81	0	2828.8
13	16.2726	50770.1	Waste	400	33	910.964	2258.99	2662.58	0	2862.5
14	16.2726	51685.3	Waste	400	33	903.947	2241.59	2835.8	0	2835.
15	16.2726	51528.6	Waste	400	33	881.619	2186.22	2750.53	0	2750.5
16	16.2726	45394.1	Waste	400	33	778.198	1929.76	2355.62	0	2355.6
17	16,2726	38993.9	Waste	400	33	675.633	1675.42	1963.98	0	1963.9
18	16.2726	35338.6	Waste	400	33	613.002	1520.11	1724,81	0	1724.8
19	16.2726	30383.9	Waste	400	33	536.499	1330.4	1432.69	0	1432.6
20	16.2726	24038.3	Waste	400	93	446.337	1106.82	1088.41	0	1088.4
21	16.2725	16189.3	Waste	400	33	342.671	849.749	692.554	0	692.55
22	2.58731	1712.53	Intermediate Cover	0	27	100.106	248.242	487.204	0	487.20
23	3.74791	1845.9	RSB	893	25	408.156	1012.14	255.493	0	255.49
24	1.2161	443.664	Geosynthetics	0	17.5	34.7108	86.0752	272.996	0	272.99
25	5.8536	991.5	Cap/Protective Cover	893	25	363.47	901.325	17.8525	0	17.852

Interslice Data

	•

ļ	Globel Mi	nimum Quen	(spencer) - Sefety Fec	tor: 2.47978		
	Slice Number	X coordinate (ft)	Y coordinate - Bottom [ft]	Intensiice Normal Force (Tbs)	Intensice Shear Force [ibs]	Intersiice Force Angle [degrees]
ł	1	15.0461	1104.43	0	0	0
I	2	21.0364	1103.58	2798.73	940.088	18.5671

Rot.Seismic,Orained.sli

3	22.2602	1103.42	2868.96	963.679	18.5671
4	25.9853	1102.95	4847.77	1628.36	18.5671
5	28.518	1102.65	5245.8	1762.06	18.5672
6	44.7905	1101.12	12944	4347.85	18.567
7	61.0631	1100.25	21600	7255.41	18.5671
8	77.3357	1100.04	30208.5	10147	18.5671
9	93.6083	1100.47	37967.5	12753.2	18.5671
10	109.881	· 1101.56	43981.2	14773.2	18,5671
11	126.153	1103.32	48039.2	16136.3	18.5671
12	142.426	1105.74	50203	16863.1	18.5671
13	158.699	1108.84	50261.4	16882.7	18.5671
14	174.971	1112.64	48126.6	16165.7	18,5672
15	191.244	1117.16	43832.2	14723.2	18.5672
16	207.516	1122.43	37532.1	12607	18.5672
17	223.789	1128.47	30536.4	10257.1	18.5671
18	240.061	1135.32	23406.3	7862.13	18.5671
19	256.334	1143.03	15851.5	5324.48	18.5671
20	272.606	1151.66	8586.29	2884.12	18.5671
21	288.879	1161.27	2512.67	844.003	18.5671
22	305.152	1171.95	-1243.9	-417.824	18.5671
23	307.739	1173.75	-2068.68	-694.865	18.5671
24	311.487	1176.42	-1439.77	-483.617	18.5671
25	312.703	1177.3	-1690.67	-567.895	18.5672
26	318.557	1181.63	0	0	0

1102 43

1961 06

063 670

٠

10 6671

List Of Coordinates

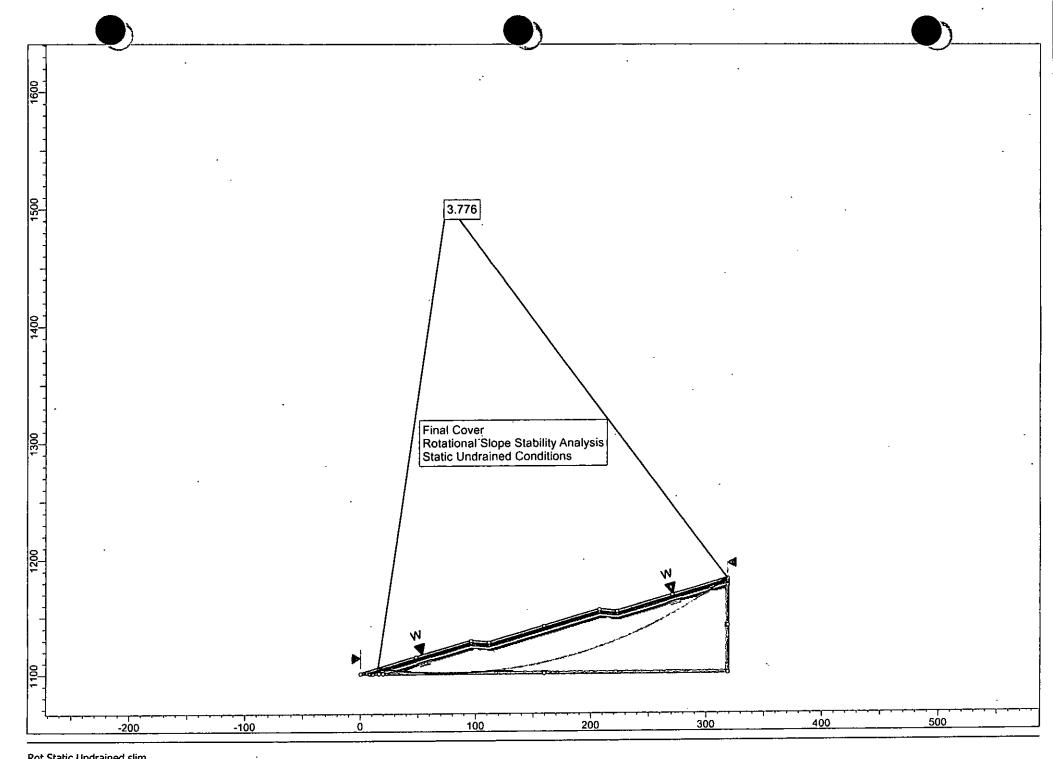
13 1601

External Boundary

X	Y
7.6905	1100
8.85002	1100
10.632	1100
15.948	1100
19.492	1100
159.352	1100
318.704	1100
318.704	1140.83
318.704	1175.94
318.704	1176.98
318.704	1178.54
318.704	1179.06
318,704	1179.41
318.704	
270.735	1167.56

Rot.Scismic.Drained.sli

.


318.704 1175.94

222.7	57 1153.45	1					
207.	32 1154.94						
159.3	52 1140.83						
111.3	34 1126.73						
95.934	6 1128,22						
47.96	3 1114.11						
	0 1100						
		· .					
Material Bo	undary	-					
X	٧	ו					
8,8600	2 1100					•	
96.177	9 1125.68						
	5 1124.19						
1 1	1 1152.41	Í .					
	8 1150.92						
	4 1179.06						
		J					
Material Bo	undary						
X	۲]					
10.63	2 1100						
96.226	2 1125.17				•		
111.67	3 1123.68]					
207.6	1 1151.9	ł					
223.05	7 1150.41				•		
318.70	4 1178.54						
							
Material Boi	indary						
×	Y	3					
15.94		1					
	1 1123.65						
	8 1122.16						
	4 1150.38						
•	1 1148.89			•			
1	4 1176.98						
510,70	• • • • • • • • • • • • • • • • • • • •	ł					
Material Bou	indary						
X	¥.].					
19.49			• •				

Rot.Scismic.Drained.sli

Rot.Scismic.Drained.sli

96.4675 1122.64 111.914 1121.15 207.851 1149.37 223.298 1147.88

Rot.Static.Undrained.slim

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: Rot.Static.UnDrained.sll Slide Modeler Version: 6.029 Project Title: SUDE - An Interactive Slope Stability Program

General Settings

Units of Measurement: Imperial Units Time Units: seconds Permeability Units: feet/second Failure Direction: Right to Left

Data Output: Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Analysis Options

Analysis Methods Used

Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of Iterations: 50 Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

·- --

.

Groundwater Method: Water Surfaces Pore Fluid Unit Welght: 52.4 lbs/ft3 Advanced Groundwater Method: Nono

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Rot_Static.UnDrained.sli

Surface Type: Circular Search Method: Auto Refine Search Divisions along slope: 10 Circles per division: 10 Number of iterations: 10 Divisions to use in next iteration: 50% Composite Surfaces: Disabled Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Property	'Cap/Protective Cover	Geosynthetics	RSa	Intermediate Cover.	Waste
Color		· 🔳			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [ibs/ft3]	130	100	130	130	90
Cohesion (psf)	893	0	893	0	400
Friction Angle [deg]	25	17.5	25	27	33
Water Surface	Water Table	None	None	None	None
Hu Value	1				
Ru Value		0	0	0	c

Global Minimums

.

Method: spencer

FS: 3.775990

- Center: 74.610, 1505.475 Radius: 405.449
- Left Slip Surface Endpoint: 15.046, 1104.425
- Right Silp Surface Endpoint: 318.557, 1181.625 Resisting Moment=2.23273e+008 lb-ft Driving Moment=5.91296e+007 lb-ft
- Resisting Horizontal Forca=525833 lb
 - Driving Horizontal Force=139257 lb
- Total Slice Area=6512.77 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces: 1965 Number of Invalid Surfaces: O

Slice Data

Rot_Static_UnDrained_sli

2

· . .

Slice Number	Width [ft]	Weight (lbs)	Base Máteriai	Cohesion (psf)	Base Friction (Angle (degrees))	Shear Stress , [pst], .	Shear Strength .[psf]	Base Normal Stress [pst]	Pore Préssure (pst)-	Effective Normal Stress [psf]
1	5.99028	1014.65	Cap/Protective Cover	893	25	270.518	1021.48	275.514	0	275.51
2	1.22379	446.47	Geosynthetics	0	17.5	32.3507	122.156	387.43	0	387.4
3	3.72611	1835.16	RSB	893	25	312.762	1180.99	617.593	0	617.55
4	2.53168	1675.71	Intermediate Cover	0	27	96.1811	363.179	712.778	0	712.7
5	16.2725	16498.5	Waste	400	33	300.552	1134.88	1131,62	0	1131.
6	16.2726	25266.8	Waste	400	33	394.967	1491.39	1680.59	0	1680.
7	16,2726	33073,4	Waste	400	33	475.674	1796.14	2149.87	0	2149.
8	16.2726	39922.4	Waste	400	33	543.367	2051.75	2543.48	0	2543.
9	16.2726	42289.2	Waste	400	33	560.947	2118.13	2645.68	0	2645.
10	16.2726	41928.6	Waste	400	33	549.196	2073.76	2577.37	0	2577.
11	15.2726	45854.9	Waste	400	33	582.11	2198.04	2768.75	0	2768.
12	16.2726	48817.7	Waste	400	33	604.019	2280.77	2896.13	0	2896.
13	15.2726	50770,1	Waste	400	33	614.898	2321.85	2959.4	0	2955
14	15.2726	51685.3	Waste	400	33	614.943	2322.02	2959.66	0	2959.
15	16.2726	51528.6	Waste	400	33	604.279	2281.75	2897.64	٥	2897.
16	16.2726	45394.1	Waste	400	33	536.567	2026.07	2503.92	0	2503.
17	16.2726	38993.9	Waste	400	33	468.28	1768.22	2106.87	0	2106.
18	16.2726	35338.6	Waste	400	33	427.271	1613.37	1868.43	0	1868.4
19	16.2726	30383.9	Waste	400	33	375.602	1418.27	1568	0	15

33 313.157 1182.48

33 239.77 905.368

27 73.4316 277.277

25 274.627 1036.99

17.5 25.4174 95.9759

25 241.159 910.613

Intersilce Data	In	ter	sll	ce	Di	ata
-----------------	----	-----	-----	----	----	-----

20 16.2726 24038.3

21 16.2726 16189.3

23 3.74791 1845.9

24 1.2161 443.664

25 5.8536 991.5

22 2.58731 1712.53 Intermediate Cover

Silca Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Intersiton Normal Force. (lbs)	intersiice - Shear Force : [îbii]	Interilice Force Angle (degrees)
1	15.0461	1104.43	0	0	0
2	21.0364	1103.58	1852.46	408.211	12.4272
3	22.2602	1103.42	1954.51	430.698	12.4272
4	25.9863	1102.95	3408.29	751.055	12.4272
5	28.518	1102.65	3863.93	851.461	12.4272
6	44.7905	1101.12	10484.8	2310.44	12.4271

Waste

Waste

RSB

Cover

Geosynthetics

Cap/Protective

400

400

893

893

0

0

Rot.Static.UnDrained.sti

7	61.0631	1100.25	18374.5	4049.04	12.4272
8	77.3357	1100.04	26579.2	5857,03	12.4272
9	93.6083	1100.47	34308.7	7560.31	12.4272
10	109.881	1101.56	40545.2	8934.59	12.4272
11	126.153	1103.32	44961.9	9907.86	12.4272
12	142.425	1105.74	47724.8	10516.7	12.4272
13	158.699	1108.84	48560.9	10700.9	12.4271
14	174,971	1112.64	47312	10425.7	12.4271
15	191.244	1117.16	43936.5	9681.89	12.4271
16	207.516	1122.43	38512.1	8486.58	12.4272
17	223.789	1128.47	32118.2	7077.51	12.4272
18	240.061	1135.32	25298.6	5574.82	12.4271
19	256.334	1143.03	17840.5	3931,36	12.4272
20	272.606	1151.66	10423.6	2296.95	12.4271
21	288.879	1161.27	3937.39	867.648	12.4272
22	305.152	1171.95	-473.514	-104.344	12.4271
23	307.739	1173.75	-1264.94	-278.743	12.4271
24	311.487	1176.42	-1059.2	-233.406	12.4271
25	312.703	1177.3	-1295.82	-285.548	12.4271
26	318.557	1181.63	0	0	0

List Of Coordinates

-- - - -

Water Table

1204.91

778.197

544,187

308.785

304.395

37.772

..

1204.91

778.197

544,187

308.785

304.396

37.772

0

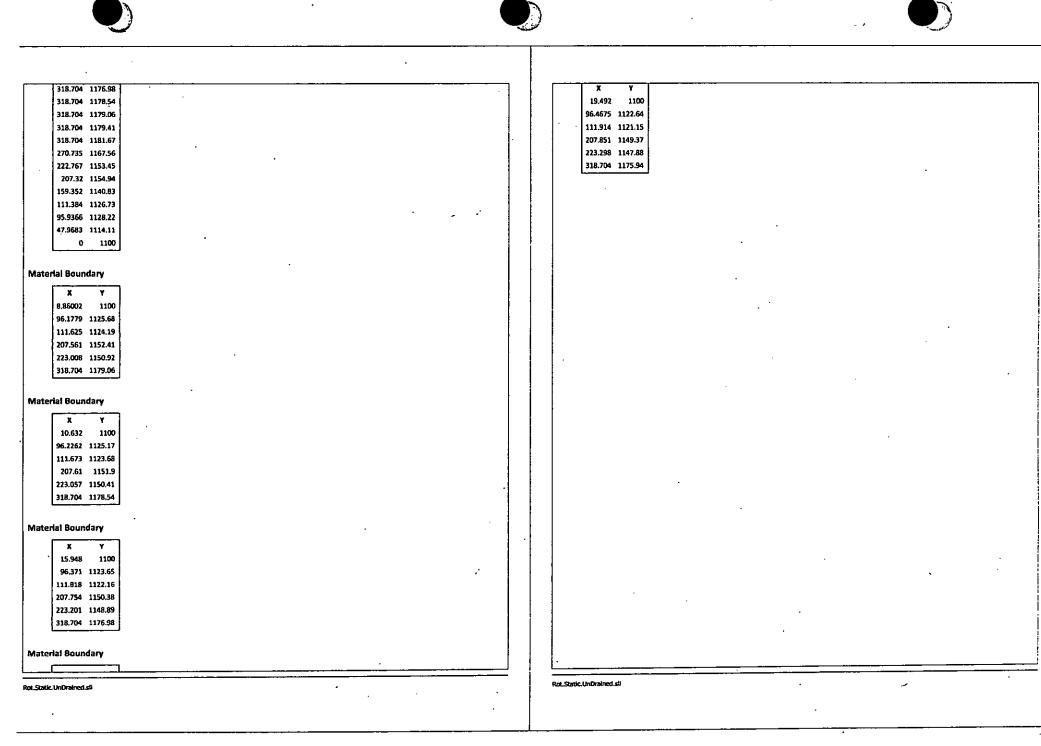
0

0

0

0

0


X	Y
7.6905	1100
96,146	1126.02
111.593	1124.53
207.53	1152.74
222.977	1151.25
318.704	1179.41

External Boundary

x	Y	
7.6905	1100	
8.86002	1100	
10.632	1100	
15.948	1100	
19.492	1100	
159.352	1100	i
318,704	1100	
318.704	1140.83	
318.704	1175.94	

Rot_Static_UnDroined.sli

-

APPENDIX C

ATTACHMENT A CONSTRUCTION QUALITY ASSURANCE/ QUALITY CONTROL PLAN

LETTER OF APPROVAL HERETO ATTACHED

ATTACHMENT A - TABLE 1 MINIMUM TEST FREQUENCIES FOR SOIL COMPONENTS

Component	Required Test	Minimum Frequency	Acceptance Criteria	Sample Size
SOIL STRUCTURAL FILL	Density/Moisture Relationship (ASTM D698 or D1557)	1 per 10,000 cu.yd.	N/A .	50 lb
	Nuclear Density Gauge In- Place Density and Moisture Content (ASTM D6938)	Placed Material: 5 tests per acre/lift	 ≥ 95% of Standard Proctor maximum dry density or ≥ 90% of Modified Proctor maximum dry density +/- 4% optimum moisture content 	N/A
	Maximum Particle Size	Visual inspection of each lift during or following placement	12 inches or less	N/A
	Lift Depth	Placed Material	Visual \leq 12 inches uncompacted thickness	N/A
	Consolidated Undrained Triaxial Compression Test (ASTM D4767) -with Pore Pressure Readings or Direct Shear Test (ASTM D3080)	Once initially unless material or conditions change	See Attachment B for required shear strength.	N/A
ROCK	Particle Size	Placed Material	Visual 100% < 24-inches	N/A
FILL	Lift Depth	Placed Material	Visual < 24 inches uncompacted thickness	N/A
	Compaction	Placed Material	Visual Observation of non-movement	N/A

.

.

ATTACHMENT A - TABLE 1 MINIMUM TEST FREQUENCIES FOR SOIL COMPONENTS

Component	Required Test	Minimum Frequency	Acceptance Criteria	Sample Size
RECOMPACTED SOIL BARRIER ¹	Sieve and Hydrometer (ASTM D422)	1 per 1,500 cu.yd.	100% <u><</u> 2-inch, 90% <u><</u> 3/ 4-inch, and 50% <u><</u> No. 200 sieve.	5-10 lb
JOBDANNEN	Unified Soil Classification (ASTM D2487)	1 per 1,500 cu.yd.	Prior to placement.	5-10 lb
	Density/Moisture Relationship ² (ASTM D698 or D1557)	1 per 1,500 cu.yd.	Prior to placement.	50 lb
	Specific Gravity ³ (ASTM D854)	1 per 1,500 cu.yd.	N/A	5-10 lb
	Permeability: Flexible Wall Permeameter (ASTM 5084)	1 per 10,000 cu.yd.	Permeability <u>≤</u> 1 x 10 ⁻⁶ cm/sec	50 lb
	Nuclear Density Gauge In-Place Density and Moisture Content (ASTM D6938)	Placed Material: 5 tests per acre/lift	≥ 95% of Standard Proctor maximum dry density or ≥ 90% of Modified Proctor maximum dry density with a moisture content at or above optimum, or as modified by test pad; or Compaction to a moisture content and dry density that meets or exceeds the best fit line of optimums.	N/A
	Moisture Content (ASTM D2216)	At discretion of CQA firm.	N/A; To confirm nuclear density gauge moisture correction.	Varies
	Lift Depth	Placed Material	≤ 8 inches uncompacted depth	N/A
1	Total Thickness	Placed Material	Minimum 18 inches. Required thickness verified by survey	N/A
	Consolidated Undrained Triaxial Compression Test (ASTM D4767) -with Pore Pressure Readings or Direct Shear Test (ASTM D3080)	One sample per material type	See Attachment B for required shear strength.	N/A

ATTACHMENT A - TABLE 1 MINIMUM TEST FREQUENCIES FOR SOIL COMPONENTS

Component	Required Test	Minimum Frequency	Acceptance Criteria	Sample Size
VEGETATIVE COVER LAYER	Visual Observation	Placed Material	Reasonably free of debris, plant matter, and foreign objects. No particles greater than 12 inches in diameter, Max lift thickness is 30 inches.	N/A
	Total Thickness	Placed Material	\geq 30 inches verified through survey or direct measurement	N/A

<u>Notes:</u>

1. Results of pre-construction testing of the borrow soils performed on representative samples shall be submitted to the Ohio EPA no later than seven days prior to the intended use of the material during construction.

2. If the use of the Best Fit Line of Optimums is proposed, both standard and modified Proctor tests will be performed on alternating samples.

3. This testing is only required if the use of the Best Fit Line of Optimums is proposed.

ATTACHMENT A - TABLE 2

40 mil LLDPE TEXTURED GEOMEMBRANE QA/QC TESTING

REQUIRED PHYSICAL PROPERTIES						
PROPERTY	TEST METHOD	REQUIRED VALUES (1)	MANUFACTURER QC TEST	QUALITY ASSURANCE TEST		
			FREQUENCY	FREQUENCY		
THICKNESS (mil)	ASTM D5994	34 minimum 36 lowest individual for 8 of 10 values 38 minimum average	Each Roll	Every 100,000 sf		
ASPERITY HEIGHT (mil) (min. avg.)	ASTM D7466	20 minimum	See Note 2	Every 100,000 sf		
SHEET DENSITY (g/cm ³) (max.)	ASTM D1505 Or ASTM D792	0.939	See Note 2	Every 100,000 sf		
TENSILE PROPERTIES (min.) (each direction) • Break Strength (lb/in) • Break Elongation (%)	ASTM D6693 Type IV	60 250	See Note 2	Every 100,000 sf		
CARBON BLACK CONTENT (allowable range in %)	ASTM D1603	2.0 - 3.0 %	See Note 2	Every 100,000 sf		
CARBON BLACK DISPERSION (acceptable levels)	ASTM D5596	9 in Categories 1 or 2, and 1 in Category 3	See Note 2	Every 100,000 sf		
PUNCTURE RESISTANCE (avg. min.) (lb)	ASTM D4833	44	See Note 2	Every 100,000 sf		
TEAR RESISTANCE (avg. min.) (lb)	ASTM D1004	22	See Note 2	Every 100,000 sf		

Notes: (1) With the exception of Asperity Height, the required values are from GRI Test Method GM 17, Standard Specification for "Test Methods, Test Properties and Testing Frequency for Linear Low Density Polyethylene (LLDPE) Smooth and Textured Geomembranes".

(2) Testing shall be completed at the manufacturer's standard testing frequency.

TABLE 2 (CONT.)

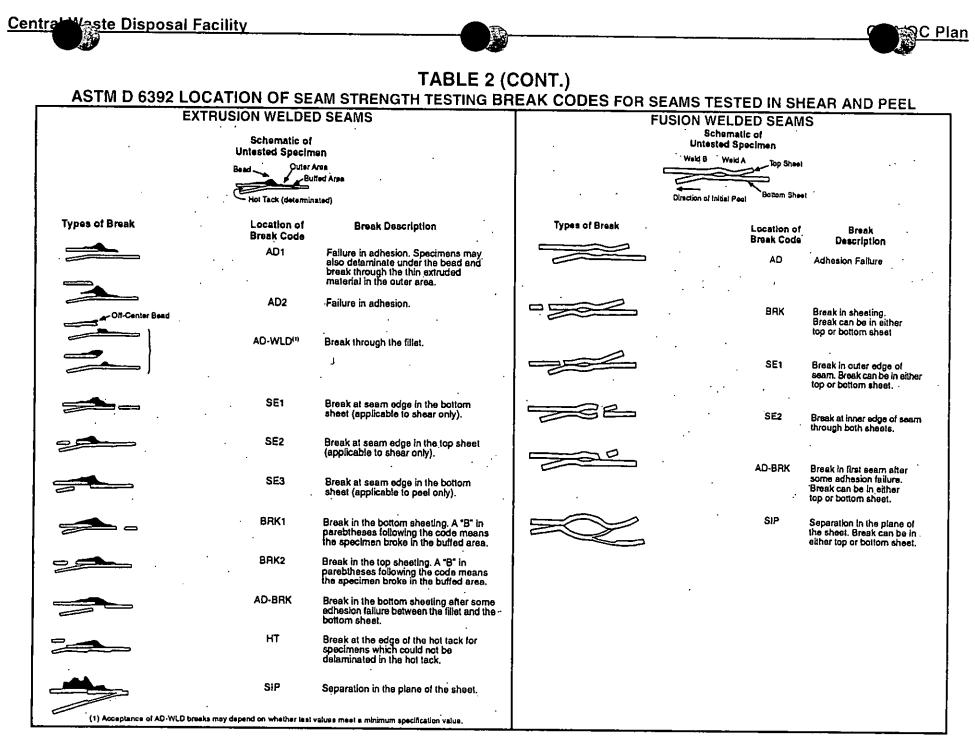
REQUIRED PHYSICAL PROPERTIES							
PROPERTY	TEST METHOD		MANUFACTURER QC TEST FREQUENCY	QUALITY ASSURANCE TEST FREQUENCY			
OXIDATIVE INDUCTION TIME • Standard (avg. min.) or	ASTM D3895	100 min	See Note 2	See Note 3			
High Pressure (avg. in.) OVEN AGING AT 85°C	ASTM D5885 ASTM D5721	400 min					
 Standard OIT (min avg % retained after 90 days) or 	ASTM D3895	35%	Certify Each Formulation	See Note 3			
 High Pressure OIT (min avg % retained after 90 days) 	A3110 23003						
 UV RESISTANCE High Pressure OIT (min avg % retained after 1600 hours) 	ASTM D5885	35%	Certify Each Formulation	See Note 3			
STRESS CRACK RESISTANCE	ASTM D5397	200 hours	Per GRI GM 10	See Note 3			
INTERFACE SHEAR STRENGTH	ASTM D5321	See Attachment B	See Note 3	See Attachment B			
GEOMEMBRANE RESIN							
DENSITY (max.) (g/ml)	ASTM D1505/D792	0.926	Each Resin Batch	See Note 3			
MELT FLOW INDEX (g/10 min) (max.)	ASTM D1238	1.0	Each Resin Batch	See Note 3			

Notes: (1) Required values are from GRI Test Method GM 17, Standard Specification for "Test Methods, Test Properties and Testing Frequency for Linear Low Density Polyethylene (LLDPE) Smooth and Textured Geomembranes".

(2) Testing shall be completed at the manufacturer's standard testing frequency.

(3) Not Required

Central Aste Disposal Facility



	IN	STALLATION T	ESTING SUMMA	RY
PROPERTY	TEST METHOD	SAMPLE SIZE	FIELD TEST FREQUENCY	ACCEPTANCE CRITERIA ⁽²⁾
TRIAL SEAM TESTING (1):		·		
PEEL TEST (lb/in) Fusion Welds	ASTM D6392	As Needed	Minimum 1 test per welder/machine combination; and prior to each seaming period	The average of the 3 tests shall be greater than 60 lb/in with one result being less than 60 lb/in but greater than 48 lb/in. Three (3) out of three (3) tests shall not have a break code of AD. AD-BRK is only an acceptable break code if seam incursion is less than 25%. Refer to schematic on Page 4 for break codes.
PEEL TEST (lb/in) Extrusion Welds	ASTM D6392		Minimum 1 test per welder/machine combination; and prior to each seaming period	The average of the 3 tests shall be greater than 52 lb/in with one result being less than 52 lb/in but greater than 42 lb/in. Three (3) out of three (3) tests shall not have one of the following break codes: AD1, AD2, AD-BRK or AD-WLD. Refer to schematic on Page 4 for break codes.
DESTRUCTIVE SEAM TES	TING ⁽¹⁾ :			
PEEL TEST (lb/in) Fusion Welds	ASTM D6392	As Needed	Minimum 1 per 500 lf of seaming per device	The average of the 5 tests shall be greater than 60 lb/in with one result being less than 60 lb/in but greater than 48 lb/in. Five (5) out of five (5) tests shall not have a break code of AD. AD-BRK is only an acceptable break code if seam incursion is less than 25%. Refer to schematic on Page 4 for break codes.
PEEL TEST (lb/in) Extrusion Welds	ASTM D6392		Minimum 1 per 500 If of seaming per device	The average of the 5 tests shall be greater than 52 lb/in with one result being less than 52 lb/in but greater than 42 lb/in. Five (5) out of five (5) tests shall not have one of the following break codes: AD1, AD2, AD-BRK or AD-WLD. Refer to schematic on Page 4 for break codes.
NON-DESTRUCTIVE SEAM	I TESTING:			
AIR-PRESSURE	GRI GM6	·····	Every Fusion Welded Seam	No more than 3 psi drop with initial pressure of 30 to 35 psi for 5 minutes.
VACUUM	ASTM D5641		Every Extrusion Weld	Examine weld for 10 seconds with minimum vacuum of 3 psi.

Notes:

(1) For double fusion welded seams, both tracks shall be tested for compliance with the minimum property values listed.

(2) Accepted specifications for breaks and unacceptable break codes obtained from the standard specifications in GRI-GM19.

ATTACHMENT A - TABLE 3

DOUBLE SIDED GEOCOMPOSITE DRAINAGE LAYER QA/QC TESTING

PROPERTY	TEST	FINAL COVER	MANUFACTURER	QA TEST				
	METHOD	SYSTEM	QC TEST	FREQUENCY				
		REQUIRED	FREQUENCY					
		VALUES						
	GEONET	COMPONENT	······	I				
THICKNESS (mil) (min.)	ASTM D5199	250	See Note 1	1 per 250,000 sf				
DENSITY (g/cm ³) (min.)	ASTM D792 or ASTM D1505	0.94 (g/cm ³)	See Note 1	1 per 250,000 sf				
CARBON BLACK CONTENT (%) (min.)	ASTM D1603	2.0 - 3.5 %	See Note 1	1 per 250,000 sf				
GEOTEXTILE COMPONENT				·				
MASS PER UNIT AREA (oz/sy) (min.)	ASTM D5261	5.0	See Note 1	1 per 250,000 sf				
APPARENT OPENING SIZE (Sieve)	ASTM D4751	70 - 140	See Note 1	1 per 250,000 sf				
PERMITTIVITY (sec⁻¹) (min.)	ASTM D4491	1.30	See Note 1	1 per 250,000 sf				
GRAB STRENGTH ⁽²⁾ (lbs) (min.)	ASTM D4632	160	See Note 1	1 per 250,000 sf				
TRAPEZOIDAL TEAR ⁽²⁾ (lbs) (min.)	ASTM D4533	65	See Note 1	1 per 250,000 sf				
CBR PUNCTURE RESISTENCE (lbs) (min.)	ASTM D6241	435	See Note 1	1 per 250,000 sf				
UV RESISTANCE (%) (min.) At 500 hours of exposure	ASTM D4355	70	Certify	N/A				
	GEOCOMPOSITE COMPONENT							
TRANSMISSIVITY (m ² /sec) (min.)	ASTM D4716	Final Cover: 5.0 x 10 ⁻⁴	See Note 1	1 per 50,000 sf (See Note 3)				
INTERFACE SHEAR STRENGTH (min)	ASTM D5321	See Attachment B	N/A	See Attachment B				

Notes:

- (1) Testing shall be completed at the manufacturer's standard testing frequency.
- (2) Minimum values measured in machine and cross machine direction.
- (3) Transmissivity tested with 500 psf at a gradient of 0.33.
- (4) The geonet and geotextile components of the double sided geocomposite shall be tested separately for the above parameters.

APPENDIX D

2008 FINAL COVER RSB PERMEABILITY RESULTS

ASTM D5084-00 Method F; Mercury U-Tube Permometer - Inflow Volume = Outflow Volume

Cline					tai Consultan	,		Boring		RSB-1				
	roject		153-121.0	002 Closur	re Constructio	on Central W	aste	Depth		09/17/15				
	No.		36291					Sample		Shelby Tube				
ilsunari	Description	1	Brown Cla	ау				Lab Sample	No.	36291001	•			
ample	Condition		Undisturb	ed										
		LE CON	DITIONS			· · · · · · · · · · · · · · · · · · ·	STANTS &	EQUATION				SUMMARY		
	Status		Initial	Final	Pipette Area					Avg. Hydraulie Co		293 cm/sec	4.5E	
			w102	w107	Annulus Ar			. 7		Initial Water Conter			13	
	re & WS, g re & DS, gn		257.42 226.97	715.89 601.01	Manometer Manometer	Constant, M		"), cm*		Initial Dry Density,	pci		11	
	ne, gm	11	8.49	8.46		estant, $S = L/.$				% Compaction Sample Status		T In diata		
	re Content,	%	13.9%	19.4%	Sample Con Specific Gra					B Parameter			Undistur	
	be & WS., 1		894.2	NA		лц C = M ₁ S/				Permeant			Deaired W	
	Tube, gm		219.66	NA		vel at Equilib		n		Cell Pressure, psi				
	WS., gm		674.6	706.8	-	vel of Pipette				Back Pressure, psi				
ength			3.136	3.158		Difference, a				Avg.(Mid-Height) (Confining Stre	ss, psi		
ength	2, in		3.142	3.19	Trial Consta	unt, T = M ₂ /	2 ₁ , cm			Maximum Gradient	-	•		
ength	3, in		3.175	3.168	Temperatur	e Correction	for 20°C, R,		0.958	Average Test Temp	Average Test Temperature, °C			
op Di	ameter, in		2.834	2.775					TE	ST DATA				
	Diameter, i		2.834	2.859	4	R _{pt}	Δz _p	i	H,	ΔH,	σ'max	σ' _{mia}	k ₂₀	
	Diameter,		2,844	2.868	Elapsed	Mercury	R _{p0} -R _{pt}	Gradient	Head	Percent of Initial	Effectiv	e Stress	Hydraulic	
	e Length, L		8.00	8.06	Time	Height				Head from t=0	Max	Min	Conductivity	
	e Area, A,		40.79	40.70	min	<u>cm</u>	Ст	<u>cm/cm</u>	CTT .	%	psi	psi	cm/sec	
	Volume, co et Wt., gm/		326.5 2.07	327.9	0.00	<u>8</u> 7.9	0	8.0	64.1	100.0%	5.46	4.54	NA	
	et Wt., gm/ et Wt., pcf		128.9	2.16 134.5	0.03	7.8	0.1	7.8	62.8 61.5	98.0% 95.9%	5.45 5.44	4.55	6.26E-06	
	y Wt., pcf		113.2	112.7	0.10	7.7	0.2	7.5	60.2	93.9%	5.43	4.50	4.76E-06 4.80E-06	
	y Wt, gm/c		1.81	1.81	0.14	7.6	0.4	7.3	58.8	91.8%	5.42	4.58	4.51E-06	
_	Gravity, A		2.7	2.7	0.18	7.5	0.5	7.1	57.5	89.8%	5.41	4.59	4.48E-06	
	atio, e		0.489	0.495	0.22	7.4	0.6	7.0	56.2	87.8%	5.40	4.60	4.41E-06	
	, n		0.328	0.331	0.26	7.3	0.7	6.8	54.9	85.7%	5.39	4.61	4.48E-06	
ore Vo	olume, cc		107.21	108.61			-						_	
aturati	on, %		77.0%		l						i			
						ELAPSED	TIME vs. H	YDRAULIC	CONDUCT	Ίνιτγ				
	1E-04 -					· ·	<u> </u>							
		=		· · · · ·			с							
ы ы	-	— н	ydraulic (Conducti	vity (20°C)			ZT)						
cnusec	•		-			· 20 (t	р у						
	-													
, k _	177.05													
5	1E-05													
at 2	1				_				~~~~~					
Ťţ.	1													
cth														
npa														
ပိ	1E-06									<u></u>				
ullc	1										- Hydraelic Co	-		
CT I											-	over last 2 readings		
4						<u> </u>					+ +0.85 to 1.15 A	Verage H.C.	<u>}</u>	
Hydr							· · · · · · · · · · · · · · · · · · ·				··· ·	-		
Hydr	1												i i	
Hydr								0.16		0.2				
Hydraulle Conductivity at 20°C, k _{za} ,	1E-07)		0.05		A 1						0.25		
Hydr	1E-07)		0.05		0.1	Floneed			0.2		0.25	0.3	
Nydr	1E-07)		0.05		0.1	Elapsed	0.15 Time, t, min		0.2		0.25	0.3	

Name average Hydraulic Conductivity is calculated using the average of the last 4 determinations where all requisite flow and Hydraulic Conductivity conditions are achieved

Prerequisits: Inflow / Outflow Ratio = 1 by definition of test procedure. Final Hydraulic Conductivity = +-25% of average Hydraulic Conductivity when k > 1E-8 cm/sec and +-50% when k < 1E-8 cm/sec.

COPYRIGHT © 2014 GEOTECHNICAL TESTING SERVICES, INC. 1-800-853-7309

ASTM D5084-00 Method F; Mercury U-Tube Permometer - Inflow Volume = Outflow Volume

					tal Consultan	•	_	Boring		RSB-2			
-	vroject			002 Closu	re Constructi	on Central W	aste	Depth		09/17/15			
	No.		36291					Sample		Shelby Tube			
	Description		Brown Cl	•				Lab Sample	e No.	36291002			
ampi	e Condition		Undisturb	ed	-								
		E CON	DITIONS	1		TEST CON	STANTS &	EQUATION		······		SUMMARY	
	e Status		Initial	Final	Pipette Are:					Avg. Hydraulic Co		20, cm/sec	1.8E
	lumber are & WS, gm		w107 166.98	w64		Annulus Area, a_{*} , cm ² 0.76712 b Manometer Constant, $M_1 = a_{*}a_{*}/(a_{*}+a_{*})$, cm ² 0.03018 b					•		12.
_	ure & DS, gm		149	433.29 367.07				"), cm*		Initial Dry Density,	pcf		10
	ue, gm		8.46	8.37		Constant, M istant, $S = L/2$				% Compaction Sample Status			
	ure Content, %		12.8%	8.4%		avity, δ = δ _{bg}				B Parameter			Undistur
_	ibe & WS., gn		408.9	NA	7	 nt, C = M ₁ S/				Permeant			Deaired W
	Tube, gm		0	NA	-	vel at Equilib		n		Cell Pressure, psi	Dealieu W		
il Oi	WS., gm		408.9	392.9		vel of Pipette				Back Pressure, psi			
ength	. l, in		2.001	1.996		Difference, a				Avg.(Mid-Height) (
ength	12, in		2.069	2.075	Trial Consta	ant, $T = M_2 /$	z ₁ , cm		0.1527	1			
ength	3, in		2.032	1.935	Temperatur	e Correction	for 20°C, R,		0.955	Average Test Temp	erature, °C		2
<u> </u>	iameter, in		2.839	2.879					TE	ST DATA	•		
	Diameter, in		2.811	2.854	4	R _{pt}	Δz _p	i	EL,	ΔĦ _t	σ'œιz	σ' _{eda}	k ₂₈
	1 Diameter, in		2.834	2.893	Elapsed	Mercury	R _{p0} -R _{pt}	Gradient	Head	Percent of Initial	Effectiv	ve Stress	Hydraulic
	e Length, L, o		5.17	5.09	Time	Height	,			Head from t=0	Max	Min	Conductivity
	e Area, A, en Volume, ce	<u>r2</u>	40.52	41.89 213.0	<u>min</u> 0.00	<u> </u>	cm	<u>cm / cm</u>	<u>cm</u>	%	psi	psi	cm/sec
	et WL, gm/cc		1.95	1.84	2.00	9.65 9.6	0.05	16.8 16.7	85.7 85.0	100.0%	5.61	4.39	NA
	et Wt., pcf	<u> </u>	121.9	115,1	4.00	9.55	0.05	16.7	84.3	99.2% 98.5%	5.60 5.60	4.40	1.78E-08
	ry Wt., pcf		108.1	106.2	6.00	9.5	0.15	16.5	83.7	97.7%	5.60	4.40	1.79E-08 1.79E-08
	ry Wt., gm/cc	•••	1.73	1.70	8.00	9.45	0.2	16.3	83.0	96.9%	5.59	4.41	1.80E-08
ŧ	Gravity, Ass	aumed	2.7	2.7	10.00	9.4	0.25	16.2	82.4	96.2%	5.59	4.41	1.81E-08
<i>.</i>	atio, e		0.559	0.586	12.00	9.35	0.3	16.1	81.7	95.4%	5.58	4.42	1.81E-08
	, n	. <u> </u>	0.359	0.370	14.00	9.3	0.35	15.9	81.1	94.7%	5.58	4.42	1.82E-08
	olume, cc		75.08	78.75									
turat	ion, %		61.8%										
						ELAPSEU .	IME vs. H	YDRAULIC	CONDUCT		···		
	^{1E-06} E									_			
	1 -	=					C		• •				
je c	F	— н	ydraulic (Conducti	vity (20°C)	k ₂₀ = R _t -	ln (1-4	Δz _p T)					
cuvsec	t-	—					t	-					
-	T			•				[
Hydraulic Conductivity at 20°C, k ₂₀	1E-07 ╆												
20-	E												
/ at	E												
i,	+-												
nct)											<u></u>		
ond								1					
S	1E-08										- Hydraulic Cor		
ilue	Ē										-	over last 2 readings	
ydr	E E										0.85 to 1.15 A	-	
Ξ.	Γ										0.05 (0 1.1.5)		
	1E-09 L						<u> </u>				ļ		
			2		4		6	8		10	12	14	16
	0												
							Elapsed .	Time, t, min					
							Elapsed	time, t, min					

Prerequisits: Inflow / Outflow Ratio = 1 by definition of test procedure. Final Hydraulic Conductivity = +-25% of average Hydraulic Conductivity when k > 1E-8 cm/sec and +-50% when k < 1E-8 cm/sec.

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER ASTM D5084-00 Method F; Mercury U-Tube Permometer - Inflow Volume = Outflow Volume

No. Isoal Description Ample Condition SAMPLE CON ample Status are Number 1. Tare & WS, gm 1. Tare & DS, gm 1. Tare, gm 1. Tare	36291 Brown Cla Undisturbe	Final 105 934.7 801.95 84.05 18.5% NA NA NA 862.4	Pipette Area Annulus Are Manometer Manometer Sample Con Specific Gra Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	a , a ₀ - cm ² ea, a ₄ , cm ² Constant, M ₁ Constant, M ₂ istant, S = 1/2 avity, $\delta = \delta_{be}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	<u>TANTS & 1</u> = $a_a a_r / (a_a + a_r) a_a + a_r / (a_a + a_r) a_a + a_r) a_a + a_r / (a_a + a_r) a_a + a_r / (a_a + a_r) + a_r$		S 0.031416 0.76712 0.03018 1.0410 0.129 12.562	09/17/15 Shelby Tube 36291003 Avg. Hydraulie Co Initial Water Conter Initial Dry Density, % Compaction Sample Status B Parameter Permeant	nductivity, k 11, %	SUMMARY	2.5J 17 1 Undistu
Angle Condition Ample Condition SAMPLE CON Ample Status are Number T. Tare & WS, gm T. Tare & WS, gm T. Tare, gm oisture Content, % T. Tube & WS., gm t. Of Tube, gm t. Of WS., gm mgth 1, in mgth 2, in mgth 3, in p Diameter, in ottom Diameter, in werage Length, L, cm werage Area, A, cm^2	Brown Cla Undisturbe DITIONS Initial w64 272.13 233.38 8.42 17.2% 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	Final 105 934.7 801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Pipette Area Annulus Are Manometer Manometer Sample Con Specific Gra Test Consta Mercury Le Mercury Le Initial Head Trial Consta	a , a ₀ - cm ² ea, a ₄ , cm ² Constant, M ₁ Constant, M ₂ istant, S = 1/2 avity, $\delta = \delta_{be}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	$= a_{a}a_{r}/(a_{a}+a_{r})$ $= 1 + a_{r}/a_{a}$ 4, cm ⁻¹ - δ_{wr} , gm/cc 5 rium, \mathbf{R}_{eq} , cm at t=0, \mathbf{R}_{p6} ,	Lab Sample EQUATION	S 0.031416 0.76712 0.03018 1.0410 0.129 12.562	36291003 Avg. Hydraulic Co Initial Water Conter Initial Dry Density, % Compaction Sample Status B Parameter	nductivity, k 11, %		2.5 17 1
ample Condition SAMPLE CON ample Status are Number 't Tare & WS, gm 't Tare & DS, gm 't Tare, gm oisture Content, % 't Tube & WS., gm 't Of Tube, gm 't Of WS., gm mgth 1, in mgth 2, in mgth 3, in p Diameter, in ottom Diameter, in verage Length, L, cm verage Area, A, cm^2	Undistubb DITIONS Initial w64 272.13 233.38 8.42 17.2% 853.2 0 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	Final 105 934.7 801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Pipette Area Annulus Are Manometer Manometer Sample Con Specific Gra Test Consta Mercury Le Mercury Le Initial Head Trial Consta	a , a ₀ - cm ² ea, a ₄ , cm ² Constant, M ₁ Constant, M ₂ istant, S = 1/2 avity, $\delta = \delta_{be}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	$= a_{s}a_{r}/(a_{s}+a_{r})$ = 1+ a_{r}/a_{s} 4, cm ⁻¹ - δ_{wr} , gm/cc 5 rium, \mathbf{R}_{eq} , cm at t=0, \mathbf{R}_{p6} ,	EQUATION	S 0.031416 0.76712 0.03018 1.0410 0.129 12.562	Avg. Hydraulic Co Initial Water Conter Initial Dry Density, % Compaction Sample Status B Parameter	nductivity, k 11, %		2.5 17 1
SAMPLE CON ample Status are Number (t. Tare & WS, gm (t. Tare & DS, gm (t. Tare, gm oisture Content, % (t. Tube & WS., gm (t. Of Tube, gm (t. Of Tube, gm (t. Of Tube, gm (t. Of WS., gm mgth 1, in mgth 2, in mgth 3, in op Diameter, in iddle Diameter, in verage Length, L, cm verage Area, A, cm^2	DITIONS Initial w64 272.13 233.38 8.42 17.2% 853.2 0 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	Final 105 934.7 801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Pipette Area Annulus Are Manometer Manometer Sample Con Specific Gra Test Consta Mercury Le Mercury Le Initial Head Trial Consta	a , a ₀ - cm ² ea, a ₄ , cm ² Constant, M ₁ Constant, M ₂ istant, S = 1/2 avity, $\delta = \delta_{be}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	$= a_{s}a_{r}/(a_{s}+a_{r})$ = 1+ a_{r}/a_{s} 4, cm ⁻¹ - δ_{wr} , gm/cc 5 rium, \mathbf{R}_{eq} , cm at t=0, \mathbf{R}_{p6} ,	,), cm ²	0.031416 0.76712 0.03018 1.0410 0.129 12.562	Initial Water Conter Initial Dry Density, % Compaction Sample Status B Parameter	nductivity, k 11, %		2.5 17 1
ample Status are Number (t. Tare & WS, gm (t. Tare & DS, gm (t. Tare, gm oisture Content, % (t. Tube & WS., gm (t. Of Tube, gm (t. Of Tube, gm (t. Of Tube, gm (t. Of WS., gm mgth 1, in mgth 2, in mgth 3, in op Diameter, in iddle Diameter, in ottom Diameter, in verage Length, L, cm verage Area, A, cm^2	Initial w64 272.13 233.38 8.42 17.2% 853.2 0 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	105 934.7 801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Pipette Area Annulus Are Manometer Manometer Sample Con Specific Gra Test Consta Mercury Le Mercury Le Initial Head Trial Consta	a , a ₀ - cm ² ea, a ₄ , cm ² Constant, M ₁ Constant, M ₂ istant, S = 1/2 avity, $\delta = \delta_{be}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	$= a_{s}a_{r}/(a_{s}+a_{r})$ = 1+ a_{r}/a_{s} 4, cm ⁻¹ - δ_{wr} , gm/cc 5 rium, \mathbf{R}_{eq} , cm at t=0, \mathbf{R}_{p6} ,	,), cm ²	0.031416 0.76712 0.03018 1.0410 0.129 12.562	Initial Water Conter Initial Dry Density, % Compaction Sample Status B Parameter	nductivity, k 11, %		2.5 17 1
re Number t. Tare & WS, gm t. Tare & DS, gm t. Tare, gm oisture Content, % t. Tube & WS., gm t. Of Tube, gm t. Of Tube, gm t. Of WS., gm mgth 1, in mgth 2, in mgth 3, in p Diameter, in iddle Diameter, in verage Length, L, cm verage Area, A, cm^2	w64 272.13 233.38 8.42 17.2% 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	105 934.7 801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Annulus An Manometer Manometer Sample Com Specific Gra Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	ea, a, cm ² Constant, M, Constant, M, Istant, S = $1/2$ avity, $\delta = \delta_{ha}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	; = 1+ a _r /a _s 4, cm ⁻¹ - δ _w , gm/cc 5 cium, R _{eq} , cr at t=0, R _{p6} , c		0.76712 0.03018 1.0410 0.129 12.562	Initial Water Conter Initial Dry Density, % Compaction Sample Status B Parameter	nt, %	5 ₂₀ , cm/sec	17 1
t. Tare & WS, gm t. Tare & DS, gm t. Tare, gm oisture Content, % t. Tube & WS., gm t. Of Tube, gm t. Of Tube, gm t. Of WS., gm mgth 1, in mgth 2, in mgth 3, in p Diameter, in iddle Diameter, in wtom Diameter, in verage Length, L, cm verage Area, A, cm^2	272.13 233.38 8.42 17.2% 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	934.7 801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Annulus An Manometer Manometer Sample Com Specific Gra Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	ea, a, cm ² Constant, M, Constant, M, Istant, S = $1/2$ avity, $\delta = \delta_{ha}$ nt, C = M ₁ S/2 vel at Equilib vel of Pipette Difference, z	; = 1+ a _r /a _s 4, cm ⁻¹ - δ _w , gm/cc 5 cium, R _{eq} , cr at t=0, R _{p6} , c		0.03018 1.0410 0.129 12.562	luitial Dry Density, % Compaction Sample Status B Parameter	•		I
t. Tare & DS, gm t. Tare, gm oisture Content, % t. Tube & WS., gm t. Of Tube, gm t. Of Tube, gm ngth 1, in ngth 2, in ngth 3, in p Diameter, in ddle Diameter, in wrage Length, L, cm verage Area, A, cm^2	233.38 8.42 17.2% 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	801.95 84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Manometer Sample Con Specific Gra Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	Constant, M ₂ istant, S = L/A avity, $\delta = \delta_{hg}$ nt, C = M ₁ S/A vel at Equilibitivel of Pipette Difference, z	; = 1+ a _r /a _s 4, cm ⁻¹ - δ _w , gm/cc 5 cium, R _{eq} , cr at t=0, R _{p6} , c		1.0410 0.129 12.562	% Compaction Sample Status B Parameter	pcf		
t. Tare, gm Disture Content, % t. Tube & WS., gm t. Of Tube, gm L. Of WS., gm ngth 1, in ngth 2, in ngth 3, in p Diameter, in ddle Diameter, in trom Diameter, in terage Length, L, cm terage Area, A, cm^2	8.42 17.2% 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	84.05 18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Sample Con Specific Gra Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	istant, $S = L/2$ avity, $\delta = \delta_{hg}$. nt, $C = M_1S/2$ vel at Equilibitivel of Pipette Difference, z	4, cm ⁻¹ - δ _w , gm/cc 5 rium, R _{eq} , cn at t=0, R _{p6} , s	n	0.129 12.562	Sample Status B Parameter			Undistu
bisture Content, % L Tube & WS., gm L Of Tube, gm L Of WS., gm ngth 1, in ngth 2, in ngth 3, in p Diameter, in ddle Diameter, in trom Diameter, in terage Length, L, cm terage Area, A, cm^2	17.2% 853.2 0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	18.5% NA NA 862.4 3.859 3.84 3.829 3.826	Specific Gra Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	avity, $\delta = \delta_{hg}$ nt, $C = M_1 S/\delta_{hg}$ vel at Equilibre vel of Pipette Difference, z	– δ _w , gm/cc 5 rium, R _{eq} , cr at t=0, R _{p0} , c	n	12.562	B Parameter			Undistu
t. Tube & WS., gm t. Of Tube, gm t. Of WS., gm ngth 1, in ngth 2, in ngth 3, in p Diameter, in iddle Diameter, in strom Diameter, in rerage Length, L, cm rerage Area, A, cm^2	853.2 0 853.2 3.9 3.901 2.902 2.896 2.91 9.91	NA NA 862.4 3.859 3.84 3.829 3.826	Test Consta Mercury Lev Mercury Lev Initial Head Trial Consta	nt, C = M ₁ S/2 vel at Equilibrie vel of Pipette Difference, z	5 rium, R _{eq} , cr at t=0, R _{p0} , c	n					
t. Of Tube, gm L. Of WS., gm ngth 1, in ngth 2, in ngth 3, in p Diameter, in iddle Diameter, in strom Diameter, in rerage Length, L, cm rerage Area, A, cm^2	0 853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	NA 862.4 3.859 3.84 3.829 3.826	Mercury Lev Mercury Lev Initial Head Trial Consta	vel at Equilib vel of Pipette Difference, z	rium, R _{eq} , cz at t=0, R _p g, s	n	3.11E-04	Permeant			
L Of WS., gm ngth 1, in ngth 2, in ngth 3, in p Diameter, in iddle Diameter, in wrage Length, L, cm verage Area, A, cm^2	853.2 3.9 3.899 3.901 2.902 2.896 2.91 9.91	862.4 3.859 3.84 3.829 3.826	Mercury Lev Initial Head Trial Consta	vel of Pipette Difference, z	at t=0, R _{p0} ,	n		1			Deaired W
ngth 1, in ngth 2, in ngth 3, in p Diameter, in ddle Diameter, in ttom Diameter, in erage Length, L, cm erage Area, A, cm^2	3.9 3.899 3.901 2.902 2.896 2.91 9.91	3.859 3.84 3.829 3.826	Initial Head Trial Consta	Difference, z				Cell Pressure, psi		•	
ngth 2, in ngth 3, in p Diameter, in ddle Diameter, in ttom Diameter, in erage Length, L, cm erage Area, A, cm^2	3.899 3.901 2.902 2.896 2.91 9.91	3.84 3.829 3.826	Trial Consta				9.5	Back Pressure, psi			
ngth 3, in p Diameter, in ddle Diameter, in ttom Diameter, in erage Length, L, cm erage Area, A, cm^2	3.901 2.902 2.896 2.91 9.91	3.829 3.826	4	int. T = M. / :		M ₂ , cm	6.66	Avg.(Mid-Height) (Confining Stre	ss, psi	
p Diameter, in ddle Diameter, in ttom Diameter, in trage Length, L, cm erage Area, A, cm^2	2.902 2.896 2.91 9.91	3.826	Temperature				0.1563				
ddle Diameter, in ttom Diameter, in erage Length, L, cm erage Area, A, cm^2	2.896 2.91 9.91			e Correction f	or 20°C, R,			Average Test Temp	erature, °C	,	
tom Diameter, in trage Length, L, cm trage Area, A, cm^2	2.91 9.91	3.884		,				ST DATA			
erage Length, L, cm erage Area, A, cm ²	9.91		t,	R _{pt}	Δzp	i	Ø.,	ΔH,	σ'	σ' _{min}	k ₂₈
erage Area, A, cm ²		3.861	Elapsed	Mercury	R _{p0} -R _{pt}	Gradient	Head	Percent of Initial		ve Stress	Hydraulic
	1 47 60	9.76	Time	Height				 Head from t=0 	Max	Min	Conductivity
nole Volume, cc		75.38	min	cm	Ст	cm / cm	cm.	%	psi	psi	cm/sec
	422.9	735.7	0.00	9.5	0	8.6	83.7	100.0%	5.60	4.40	NA
it Wet WL, gm/cc	2.02	1.17	0.03	9.4	0.1	8.4	82.4	98.4%	5.59	4.41	2.52E-06
it Wet WL, pcf	125.9	73.1	0.06	9.3	0.2	8.3	81.1	96.9%	5.58	4.42	2.44E-06
t Dry Wt., pcf	107.4	61.7	0.10	9.2	0.3	8.2	79.8	95.3%	5.57	4.43	2.50E-06
it Dry Wt., gm/cc	1.72	0.99	0.13	9.1	0.4	8.0	78.5	93.8%	5.56	4,44	2.48E-06
Gravity, Assumed	2.7	2.7	0.16	9	0.5	7.9	77.2	92.2%	5.55	4.45	2.49E-06
atio, c	0.569	1.729	0.20	8.9	0.6	7.8	75.8	90.6%	5,54	4.46	2.47E-06
, n	0.363	0.634	0.23	8.8	0.7	7.6	74.5	89.1%	5.53	4.47	2.51E-06
e Volume, cc	153.34	466.17								<u> </u>	
uration, %	81.8%						CONDUC				
				ELAPSED	IME vs. H	YDRAULIC	CONDUCT				
1E-04				<u></u>							
<u> </u>					c						
, <u>н</u> н	vdraulic (^{onducti}	vity (20°C)	$k_{20} = R_t -$		\ 7 T)					
	yaraube (Junanca	(10 C)	, n ₂₀ - n ₄ -	t						
						· .	· · · · · -				
K IQ									1		1
IE-05						• •					
3				· · · · ·							
£											<u> </u>
i	-							<u> </u>	******		
3 1E-06								<u>+</u>			
								<u>†</u>	- Hydraulic Co		
;										. over last 2 readings	
•			· · ·	-				· · · ·	• •0.85 to 1.15 /	verage H.C.	
<u>}</u>								<u> </u>		<u> </u>	
1E-07	<u> </u>				. <u> </u>			·			
0		0.0	00		0.1		0	.15	0.3	2	0.2
					Elapsed	Time, t, min					
alidation: ALO				Reviewed By	r: SVG					Date Tested:	9/28/2

Prerequisits: Inflow / Outflow Ratio = 1 by definition of test procedure. Final Hydraulic Conductivity = +-25% of average Hydraulic Conductivity when k > 1E-8 cm/sec and +-50% when k < 1E-8 cm/sec.

ASTM D5084-00 Method F; Mercury U-Tube Permometer - Inflow Volume = Outflow Volume

				al Consultant	•		Boring		RSB-4			
roject			002 Closu	re Constructio	on Central W	aste	Depth		09/17/15			
No.		36291					Sample		Shelby Tube			
isual Description	1	Brown Cla	iy				Lab Sample	No.	36291004			
ample Condition		Undisturb	ed					<u> </u>				
	PLE CON					TANTS &	EQUATION				SUMMARY	
ample Status		Initial	Final	Pipette Area					Avg. Hydraulie Co	-	20, cm/sec	2.2E
are Number		W100	Z	Annulus Are			. ,		Initial Water Contes	•		13.
/L. Tare & WS, g		267.3	738.13		Constant, M		"), cm"		Initial Dry Density,	pei		11
t. Tare & DS, gr t. Tare, gm	<u>n</u>	237.53 8.39	626.24 8.33		Constant, M istant, $S = L/.$				% Compaction Sample Status			
loisture Content,	%	13.0%	18.1%		avity, $\delta = \delta_{hg}$				B Parameter			Undistur
L Tube & WS.,		942.7	NA	-	лц, C = M ₁ S/				Permeant			Deaired W
t. Of Tube, gm	<u> </u>	227.64	NA		vel at Equilib		m		Cell Pressure, psi			Elanca W
't. Of WS., gm		715.0	747.4	4	vel of Pipette				Back Pressure, psi			
ingth 1, in		3.256	3.27	1	Difference, a				Avg.(Mid-Height) (Confining Stre	ss, psi	
ngth 2, in		3.269	3.245	-	ant, $T = M_2 /$	• •	-		Maximum Gradient	-	.,	1
mgth 3, in		3.274	3.299	4	e Correction			0.960	Average Test Temp	erature, °C		2
p Diameter, in		2.846	2.869					TI	EST DATA			
iddle Diameter,	in	2.849	2.871	t,	R _{pt}	Δzp	i	H _t	ΔĦ,	σ'	σ' _{min}	k ₂₀
ottom Diameter,	in	2.856	2.81	Elapsed	Mercury	R _{p0} -R _{pt}	Gradient	Head	Percent of Initial	Effecti	ve Stress	Hydraulic
verage Length, L	, cm	8.30	8.31	Time	Height				Head from t=0	Max	Min	Conductivity
verage Area, A,	ст^2	41.17	41.16	min	ст	ст	cm / cm	cm	%	psi	psi	cm/sec
imple Volume, c	c .	341.5	342.0	0.00	12	0	14.0	116.4	100.0%	5.83	4.17	NA
nit Wet Wt., gm/	'cc	2.09	2.19	0.22	11.9	0.1	13.8	115.1	98.9%	5.82	4.18	4.01E-07
nit Wet WL, pcf		130.6	136.4	0.66	11.8	0.2	13.7	113.8	97.8%	5,81	4.19	2.66E-07
nit Dry WL, pcf		115.6	115.5	1.06	11.7	0.3	13.5	112.5	96.6%	5.80	4.20	2.51E-07
nit Dry Wt, gm/		1.85	1.85	1.51	11.6	0.4	13.4	111.2	95.5%	5.79	4.21	2.37E-07
Gravity, A	assumed	2.7	2.7	2.08	11.5	0.5	13.2	109.8	94.4%	5.78	4.22	2.16E-07
atio, e		0.457	0.459	2.57	11.4	0.6	13.1	108.5	93.3%	5.77	4.23	2.11E-07
<u>y, n</u>		0.314	0.315	2.94	11.3	0.7	12.9	107.2	92.1%	5.76	4.24	2.16E-07
ore Volume, cc		107.17 76.7%	107.01									
		70.776		I	FT APSED '	LIME ve H	I YDRAULIC	CONDUCT	1 <u></u>			
						111745 13. 14	(DIGIOLITO	CONDOC				
1E-04			1: •									
	<u> </u>				-	C		•				
2	Щ ну	ydraulic (Conducti	vity (20°C)	$k_{20} = R_t -$	—— In (1-,	∆z _p T)					
cm/sec	<u> </u>					t	·					
	<u> </u>										·	
⊶ີ ເ_ີ 1E-05 :												
0 1E-03												
14 14	 		_									
ţ;												
ctiv						_						
apr												
Hydraulic Conductivity at 20°C, k ₁₀ . 90-31	<u> </u>		_									<u> </u>
lic											-	
rau	r									Average H.C	over last 2 readings	
lyd .	<u> </u>									0.85 to 1.15 /	Average H.C.	
	<u> </u>											
	1											
	<u> </u>		<u> </u>				د			r		J
1E-07	0		0.5		ł	1.		2	2.	.5	3	3.4
						Elapsed	Time, t, min					
					Reviewed B				<u> </u>	_	Date Tested:	

Prerequisits: Inflow / Outflow Ratio = 1 by definition of test procedure. Final Hydraulic Conductivity = +-25% of average Hydraulic Conductivity when k > 1E-8 cm/sec. and +-50% when k < 1E-8 cm/sec.

COPYRIGHT © 2014 GEOTECHNICAL TESTING SERVICES, INC. 1-800-853-7309

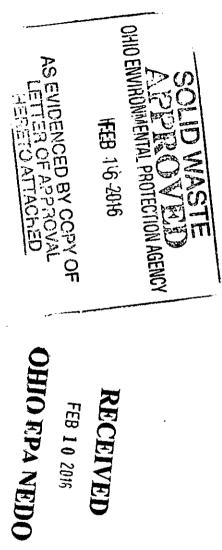
ASTM D5084-00 Method F; Mercury U-Tube Permometer - Inflow Volume = Outflow Volume

	roject				tal Consultan		ŧ	Boring		RSB-5				
				1002 Closu	re Constructi	on Central W	aste	Depth		09/17/15				
	No.		36291	• •				Sample		Shelby Tube				
	Description			Gray Clay				Lab Sample	No.	36291005				
ample	Condition		Undisturb											
		PLE CON	DITIONS				STANTS &	EQUATION				SUMMARY		
ample			Initial	Final	Pipette Area	a, a _o - cm ²				Avg. Hydraulie Co		30, cm/sec	6.11	
are Nu			w66	120	Annulus Ar			-		Initial Water Conte			15	
	e & WS, g		41.73	900.14			-a_a_/(a_+a	"), cm²		Initial Dry Density,	pcf		ı	
	τ&DS,gn	n	37.2	789.62	Manometer					% Compaction				
Vt. Tan			8.3	83.31		istant, $S = L/$				Sample Status			Undistu	
	e Content,		15.7%	15.6%	Specific Gr	•	-			B Parameter				
	be & WS., j	<u>gm</u>	816.2	NA	-	$mt, C = M_1 S_1$				Permeant			Deaired W	
	Tube, gm		0	NA NA			orium, R _{eq} , ci			Cell Pressure, psi				
	WS., gm		816.2	816.0			at t=0, R _{p0} ,			Back Pressure, psi				
ength 1			3.55	3.52			z ₁ =(R _{p0} -R _{eq})	M ₂ , cm		Avg.(Mid-Height) (ss, psi		
ength 2			3.62	3.491		unt, $T = M_2 / $				Maximum Gradient				
										Average Test Temperature, °C				
			+		- <u> </u>			· · · · ·		ST DATA		, <u>––</u>		
	Diameter, i Diameter, i		2.835	2.845	t, Flored	Rpt		i C-ti-t	H _e	ΔH _t	σ'	σ' _{min}	k ₂₀	
	Length, L		2.839 9.09	2.841	Elapsed	Mercury	R _{p0} -R _{pt}	Gradient	Head	Percent of Initial		ve Stress	Hydraulic	
	Area, A,		40.75	8.90 41.24	Time	Height				Head from t=0	Max	Min	Conductivity	
	Volume, co		370.3			<u>cm</u>	Cm	/ cm	CTM CCM	%	psi	psi	cm/sec	
				366.9 2.22	0.00	9.7	0	9.7	86.3	100.0%	10.61	9.39	NA	
	t Wt., gm/a t Wt., pcf	ci.	2.20	138.8	0.17	9.6 9.5	0.1	9.6	85.0	98.5%	10.60	9.40	7.29E-07	
	y Wt., pcf		118.9	120.0	0.39	<u> </u>	0.2	9.4	83.7		10.60	9.40	6.52E-07	
	/Wt.gm/c	~	1.91	1.92	0.80	<u>9.4</u> 9.3	0.3	9.3	82.4	95.5%	10.59	9.41	6.39E-07	
	Gravity, A		2.7	2.7	1.08	9.3	0.4	9.1	81.1	93.9%	10.58	9.42	6.33E-07	
	tio, e	ssumed	0.417	0.404	1.30	9.2	0.5	9.0 8.8	79.8 78.5	92.4%	10.57	9.43	6.02E-07	
	1 a		0.294	0.288	1.56	9	0.0	8.7	78.5	90.9%	10.56	9.44	6.06E-07	
	hume, cc		108.97	105.57	- 1.50		0.7	0.7	11.2	89.4%	10.55	9.45	5.93E-07	
aturatio			101.5%											
	,					ELAPSED '	LIME vs. H	YDRAULIC	CONDUCT			L		
									00112001					
	1E-05 F											·	}	
	Ŧ						C		-	·				
Sec	1	н	ydraulic (Conducti	vity (20°C)	$k_{20} = R_t -$	—— ln (1-2	کد <mark>ی</mark> T)						
cu/sec	ł						t	•						
_	ļ							-	· .					
¥.														
15	Ť							· [·						
0. 0										ĺ				
at 20°C,														
ity at 20°C,	1E-06 +													
ctivity at 20°C,	1E-06													
iductivity at 20°C,	1E-06					· · · · · · · · · · · · · · · · · · ·			<u></u>					
Conductivity at 20°C,	1E-06					1								
lic Conductivity at 20°C,	1E-06													
raulic Conductivity at 20°C,	1E-06						····					Conductivity		
tydraulic Conductivity at 20°C,	1E-06											•	n	
Alydraulic Conductivity at 20°C,	1E-06										Average H.	.C. over last 2 readin	*	
Hydraulic Conductivity at 20°C,	1E-06											.C. over last 2 readin	p	
Hydraulic Conductivity at 20°C, k _{in}	1E-06 1E-07										Average H.	.C. over last 2 readin	#	
Hydraulic Conductivity at 20°C,			0.2		0.4	0.6		0.8	1	1.2	Average H.	.C. over last 2 readin		
Ilydraulic Conductivity at 20°C,	1E-07		0.2		0.4	0.6			1	1.2		.C. over last 2 readin 5 Average H.C.		
11ydraulic Conductivity at 20°C,	1E-07		0.2		0.4	0.6		0.8 Time, t, min	1	1.2		.C. over last 2 readin 5 Average H.C.		

average Hydraulic Conductivity is calculated using the average of the last 4 determinations where all requisite flow and Hydraulic Conductivity conditions are achieved!

Nd

.


Pre-equisits: Inflow / Outflow Ratio = 1 by definition of test procedure. Final Hydraulic Conductivity = +-25% of average Hydraulic Conductivity when k > 1E-8 cm/sec and +-50% when k < 1E-8 cm/sec.

ASTM D5084-00 Method F; Mercury U-Tube Permometer - Inflow Volume = Outflow Volume

Client	Civil & E	avironmen	tal Consultan	ts, Inc.		Boring		RSB-6					
Controject	153-121.0	002 Closu	re Constructi	on Central W	aste	Depth		09/17/15					
No.	36291					Sample		Shelby Tube					
isual Description	Brown Cl	ay				Lab Sampl	e No.	36291006			•		
Sample Condition	Undisturb	ed											
SAMPLE	CONDITIONS			TEST CON	STANTS &	EQUATIO.	NS	1					
Sample Status	Initial	Final	Pipette Area	a, a, - cm ²			0.031416	Avg. Hydraulic Co		SUMMARY	1.9E		
are Number	w100	w66	Annulus Ar					Initial Water Conter	15.				
Vt. Tare & WS, gm	71.56	777.39			-a_a_/(a_+a	"), cm ²	0.03018	Initial Dry Density,	11				
Vt. Tare & DS, gm	63.12	674.72	Manometer					% Compaction	-				
Vt. Tare, gm	8.39	8.28	Sample Cor	istant, S = L/	A, cm ⁻¹		0.211	Sample Status			Undistur		
Aoisture Content, %	15.4%	15.4%	Specific Gr	avity, δ = δ _{bs}	– δ _w , gm/cc		12.562	B Parameter					
Vt. Tube & WS., gm	766.4	NA		nt, $\mathbf{C} = \mathbf{M}_{i}\mathbf{S}_{i}$			5.07E-04	Permeant			· Deaired W		
Wt. Of Tube, gm	0	NA	Mercury Le	vel at Equilit	orium, R _{eq} , ci	m	3.1	Cell Pressure, psi					
Vt. Of WS., gm	766.4	766.3			: at t=0, R _{p0} ,		9.9	Back Pressure, psi					
ength 1, in	3.473	3.381	Initial Head	Difference, :	z, =(R _{p0} -R _{eq})	M ₂ , cm	7.08	Avg.(Mid-Height) (Confining Stre	ss, psi			
ength 2, in	3.45	3.389	Trial Consta	ant, T = M_2 /	z _l , cm			Maximum Gradient		• -	1		
ength 3, in	3.433	3.382	Temperatur	e Correction	for 20°C, R,		0.965	Average Test Temp	est Temperature, °C 2				
op Diameter, in	2.83	2.845					TE	ST DATA					
Aiddle Diameter, in	2.825	2.826	t,	R _{pt}	∆z _p	i	H,	ΔH _t	ס' _{שיע}	σ'ωω	k_20		
Bottom Diameter, in	2.821	2.838	Elapsed	Mercury	Rp0-Rpt	Gradient	Head	Percent of Initial	Effecti	ve Stress	Hydraulic		
verage Length, L, cm	8.77	8.60	Time	' Height				Head from t=0	Мах	Min	Conductivity		
Verage Area, A, cm^2	40.45	40.76	min	cm	ст	ст / ст	ст	%	psi	<u>psi</u>	cm/sec		
ample Volume, cc	354.7	350.4	0.00	9.9	0	10.3	88.9	100.0%	5.63	4.37	NA		
Jnit Wet WL, gm/cc	2.16	2.19	5.00	9.8	0.1	10.2	87.6	98.5%	5.62	4.38	2.41E-08		
Jnit Wet Wt., pcf	134.8	136.5	10.00	9.7	0.2	10.0	86.3	97.1%	5.61	4.39	2.43E-08		
Init Dry Wt., pcf	116.8	118,2	15.00	9.6	0.3	9.9	85.0	95.6%	5.60	4.40	2.45E-08		
Jnit Dry Wt., gm/cc	1.87	1.90	20.00	9.55	0.35	9.8	84.3	94.9%	5.60	4.40	2.15E-08		
Gravity, Assur		2.7 .	25.00	9.5	0.4	9.7	83.7	94.1%	5.60	4.40	1.97E-08		
atio, e	0.442	0.425	30.00	9.45	0.45	9.7	83.0	93.4%	5.59	4.41	1.86E-08		
<u>, п</u>	0.307	0.298	35.00	9.4	0.5	9.6	82.4	92.6%	5.59	4,41	1.78E-08		
ore Volume, cc	108.74	104.46	ļ										
aturation, %	94.2%				L	<u> </u>	<u></u>			I			
		-		ELAT SED	1 J/4LC V3. D	IDRAULI	C CONDUCT						
1E-06													
8 <u> </u>						- <u> </u> }							
cin/sec					С								
5 <u>-</u>	Hydraulic (Conducti	vity (20°C)	$\mathbf{k}_{10} = \mathbf{R}_t - \mathbf{R}_t $	<u> </u>	کد <mark>ہ</mark> T)							
					t								
2	:				1					·	.		
Ç —					1								
<u>ě</u>													
1E-07					ļ								
g f					†								
<u> </u>									- Hydraulic Coo				
× +			— ·· · -				·		-	over last 2 readings			
- <u>-</u>	 				1			+1	- +0.85 to 1.15 Av	verage H.C.	}		
			<u> </u>		1								
ydraulic				···	· · · · · · · · · · · · · · · · · · ·			<u></u>		<u> </u>	[
Hydraulic Conductivity at 20°C, k ₁₁ , 20°C, k ₁₂ , 20°C,			1 1			-							
Hydrauli			1			1		1	1	1			
Hydraufic													
1E-08					<u> </u>		_						
	5		10		15	20		25	30	35			
1E-08	5		10		-	20 I Time, t, m	in	25	30	35	40		

A average Hydraulic Conductivity is calculated using the average of the last 4 determinations where all requisite flow and Hydraulic Conductivity conditions are achieved! Prerequisits: Inflow / Outflow Ratio = 1 by definition of test procedure. Final Hydraulic Conductivity = +-25% of average Hydraulic Conductivity when k > 1E-8 cm/sec and +-50% when k < 1E-8 cm/sec.

COPYRIGHT © 2014 GEOTECHNICAL TESTING SERVICES, INC. 1-800-853-7309

