

October 10, 2025

Transmitted Electronically

Mr. Austin Tweedy
Hydrogeologist
Division of Environmental Response & Revitalization
Ohio EPA – Southeast District Office
2195 Front Street
Logan, Ohio 43138

Re: 2025 Second Quarter Groundwater Monitoring Report

Howmet - Former WearEver Facility

Chillicothe, Ohio

Dear Mr. Tweedy:

Attached, please find the above-referenced groundwater monitoring report for the former WearEver facility located in Chillicothe, Ohio.

If you have any questions or desire additional information, please do not hesitate to call.

Best regards,

Key Environmental, Inc.

Andrew Franze, P.G. Supervising Geologist

cc: Patrick Cook - Howmet

Attachment

GROUNDWATER MONITORING REPORT SECOND QUARTER SAMPLING EVENT MAY 2025

HOWMET FORMER WEAREVER FACILITY CHILLICOTHE, OHIO OCTOBER 2025

Prepared for:

HOWMET AEROSPACE INC. 201 Isabella Street Pittsburgh, Pennsylvania 15212

Prepared by:

KEY Environmental, Inc.

200 Third Avenue Carnegie, Pennsylvania 15106 (412) 279-3363 FAX: (412) 279-4332 KEY Environmental Project No. 25046

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	MO	NITORING ACTIVITIES	4
3.0	MOI	NITORING RESULTS	5
	3.1	WATER LEVEL MEASUREMENTS	5
	3.2	GROUNDWATER SAMPLE RESULTS	6
		3.2.1 Quarterly Groundwater Plume Monitoring Network	6
4.0	EVA	ALUATION	8
	4.1	QUARTERLY TRIGGER CRITERIA	
5.0	SUM	MMARY & RECOMMENDATIONS	10

LIST OF TABLES

Table 1	Groundwater Monitoring Summary, Second Quarter 2025
Table 2	Summary of VOC Detections, Quarterly Groundwater Plume Monitoring Network, Second Quarter 2025

LIST OF FIGURES

Figure 1	Site Topographic Location
Figure 2	Piezometric Surface of Intermediate Aquifer Zone May 5, 2025
Figure 3	Expanded Piezometric Surface of Intermediate Aquifer Zone May 5, 2025
Figure 4	Hydrograph–Groundwater Level Recorders October 29, 2012– May 5, 2025
Figure 5	MW-D-S TCE Concentrations versus Time
Figure 6	MW-I-S TCE Concentrations versus Time
Figure 7	MW-C-I cis-1,2-DCE and Vinyl Chloride Concentrations versus Time
Figure 8	MW-OS-1-I cis-1,2-DCE and Vinyl Chloride Concentrations versus Time

LIST OF APPENDICES

Appendix A	Figure 2 and Table 1 from Groundwater Monitoring Plan
Appendix B	Laboratory Results and Data Validation Report

1.0 INTRODUCTION

Historical manufacturing at the Howmet Aerospace Inc. (formerly known as Alcoa Inc. and more recently known as Arconic Inc.) Former WearEver Facility (Site) located in Chillicothe, Ohio has resulted in the presence of volatile organic compounds (VOCs) in subsurface soils and groundwater at the Site. Figure 1 is a location map for the Site and surrounding areas. Remedial investigations have determined that an on-Site VOC groundwater plume extends off-Site to non-potable production wells located approximately 2,000 feet (ft) east-northeast of the Site and operated by a paper mill. The paper mill was sold by the Glatfelter Paper Company, Inc. (Glatfelter) to Pixelle Specialty Solutions (Pixelle) on October 9, 2019, per the Ross County Clerk records. Pixelle recently announced plans to close the paper mill facility. Closure of the paper mill will likely result in shutdown of pumping operations of Pixelle production wells.

The 1998 Decision Document identifies the selected remedy for groundwater based on the Remedial Action Objectives (RAOs) which were:

- "Control access to affected groundwater, both on-site and off-site, such that unacceptable exposure does not occur, and
- Ultimately achieve Maximum Contaminant levels (MCLs) for select volatile organic compounds (VOCs) found in the groundwater on-site."

To achieve the RAOs, the remedy selected by Ohio EPA for groundwater was a combination of the Source Area soil vapor extraction / air sparging (SVE/AS) and the Limited Action alternatives. The Limited Action alternative includes groundwater monitoring to evaluate the effectiveness of the SVE/AS at the source areas and to monitor both the on-site and off-site plume.

In March of 1999, Alcoa entered into an agreement (Director's Final Findings and Orders) with the Ohio Environmental Protection Agency (Ohio EPA) to perform the remedial actions at the Site, and to monitor the groundwater plume. Although the on-Site remedial actions have improved groundwater quality, the off-Site VOC groundwater plume is expected to persist for many years.

Ohio EPA included contingencies in the selected alternative to address a future situation like the anticipated cessation of pumping of the Pixelle production wells which is a groundwater use modification. Specifically, the 1998 Decision Document states: "under this alternative, contingencies are provided in the event that operation of any of the industrial wells along the Scioto River changes in such a way that the plume of VOC impacted groundwater changes in size or direction." Howmet is currently collaborating with Ohio EPA to implement the contingencies listed in the 1998 Decision Document which include:

- "Evaluate the proposed groundwater use/change and determine the potential human health and environmental risks (including the risk of contaminating previously uncontaminated groundwater);
- Identify alternative responses to the proposed groundwater use/change if determined to pose an unacceptable risk; and

• Work with the [potentially downgradient] landowner and Ohio EPA to implement the alternative response that best suits the [potentially downgradient] landowner's needs, minimizes risk, and is most cost-effective."

The Groundwater Monitoring Plan (GWMP; KEY Environmental, 2012) was updated in March 2012 to document changes to the predominant groundwater flow direction and monitoring trigger data. The GWMP was approved by the Ohio EPA on June 4, 2012.

The Fifth Revision of the GWMP describes the groundwater monitoring activities to be performed at the Site. The Second Quarter 2025 event included those elements of the GWMP listed as "quarterly," including:

- 1) Monitoring of groundwater flow direction in the plume area and along the southeastern property line;
- 2) Monitoring groundwater quality on the southeastern Site area and off-Site center line of the VOC plume; and
- 3) Downloading data from the barometric pressure transducer and transducer data loggers installed in monitoring wells MW-H-I, MW-I-I, and MW-F-I.

In addition to the revisions contained in the March 2012 GWMP, additional monitoring recommendations were made during the course of the Third Five-Year Review conducted in 2015. These recommendations, which were approved by Ohio EPA in a February 3, 2016 response letter, consist of:

- Discontinue sampling of the Hammond Well (unless a southeast shift of groundwater flow direction occurs);
- Discontinue sampling of monitoring wells MW-D-D and MW-H-I; and
- Reduce sampling to annual at monitoring wells MW-D-I, MW-I-I, and MW-G-I.

Appendix A of this report includes Table 1 and Figure 2 of the revised GWMP that provides the schedule for sample collection and analysis, and the locations of the on- and off-Site monitoring wells.

The objectives of the quarterly monitoring events described in the revised GWMP are as follows:

- 1) Confirm that hydrodynamic control of the existing off-Site VOC groundwater plume is maintained by the Pixelle Collector Wells 17 and 18, located to the east and northeast of the Site, by detecting potential southerly shifting of the plume toward potential groundwater receptors southeast of the Site; and
- 2) Monitor the sample concentrations of the off-Site plume.

In addition to these objectives, the GWMP includes performing water level measurements in selected wells to monitor the groundwater flow direction and the Groundwater Use Notification Agreements (GWUNAs) placed on the properties surrounding the Site.

The Second Quarter 2025 Sampling Event was completed in May 2025. This report has been prepared to present the results of the monitoring performed under the revised GWMP.

The Ohio EPA provided a letter to Howmet on July 7, 2025 regarding enhanced monitoring in response to the anticipated shutdown of the paper mill. KEY provided a response letter to the Ohio EPA on August 1, 2025 detailing enhanced monitoring that will go into effect during the third quarter monitoring event. The enhanced groundwater monitoring objective in the short-term future is to characterize and evaluate the steady-state conditions during the anticipated cessation of pumping from the paper mill wells. After the groundwater conditions are thoroughly characterized, an appropriate response action can be determined.

2.0 MONITORING ACTIVITIES

On behalf of Howmet, Field and Technical Services, LLC (FTS) conducted the Second Quarter 2025 monitoring activities in accordance with the revised GWMP dated March 2012 and the approved monitoring changes recommended in the Third Five-Year Review. The Second Quarter 2025 sampling event included the following activities:

- Measuring water levels at Site-related monitoring wells and select off-site Pixelle observation wells;
- Retrieving groundwater samples from five wells;
- Downloading data from the barometric pressure transducer and continuous water level recorders maintained within three on-Site wells MW-F-I, MW-H-I, and MW-I-I; and
- Installing Equilibrator® passive diffusion samplers in monitoring wells (after completion of the groundwater sample collection).

During a previous sampling event, FTS installed passive diffusion samplers in the quarterly monitoring wells. The passive samplers were allowed to equilibrate for approximately two months (between March 18, 2025 and May 5, 2025), prior to collection on May 5, 2025. Prior to removing the samplers, water levels were measured in Site monitoring wells. After the water level measurements were completed, the diffusion samplers were extracted from the wells and the contents transferred into pre-preserved 40-milliliter (mL) vials. The samples were submitted under chain of custody protocol to Eurofins Laboratories in Cleveland, Ohio for analysis by USEPA SW-846 Method 8260D.

3.0 MONITORING RESULTS

3.1 WATER LEVEL MEASUREMENTS

Water levels were measured in 18 Site-related monitoring wells and seven Pixelle observation wells during the Second Quarter 2025 Monitoring Event. The water level measurements and piezometric surface elevations for the Second Quarter 2025 are provided in Table 1. The May 2025 water level data were used to calculate groundwater elevations, which were used to develop a piezometric surface elevation contour map for the intermediate zone (Figures 2 and 3). Figure 2 provides a Site piezometric surface map, and Figure 3 provides an expanded piezometric surface map that includes select Pixelle observation wells. The Pixelle Collector Wells 17 and 18 were operating at the time of the monitoring event.

Pixelle has operated several collector wells around the Site that influence groundwater flow beneath the Site. Collector Wells 17 and 18 are located approximately 2,000 ft east and northeast of the Site, respectively. Historically, Collector Well 18 provided the greatest influence on groundwater flow direction, which was typically to the northeast. However, as noted in the 2020 Five-Year Review Report¹, it was observed in the second quarter of 2020 that the groundwater flow direction had shifted to the southeast. Pixelle was contacted to determine if they had well maintenance issues or had made changes to their pumping operations. Subsequent data provided by Pixelle showed apparent reduced production from their collector wells prior to the second quarter of 2020. Groundwater flow data at the Site through the third quarter of 2021 showed the flow was generally to the southeast, and the horizontal hydraulic gradient was less than half of the typical historical values. However, since then, the past four years of potentiometric data indicate that the horizontal groundwater flow direction at the Site has shifted back toward the eastnortheast. There is also an apparent east-northeastern flow direction at, or immediately beyond, the eastern property boundary during recent monitoring events. Pixelle redeveloped Collector Well 17 in October 2021, which improved Collector Well efficiency. Pixelle also completed well maintenance work in March 2024 at both Collector Wells 17 and 18. The May 2025 expanded gauging data included in Figure 3 shows that groundwater is captured by Collector Wells 17 and 18. The horizontal hydraulic gradient beneath the property (May 2025) was approximately 0.0013 ft/ft and becomes steeper as groundwater approaches the pumping wells.

In addition to measured water levels, daily water levels were recorded between March 18, 2025 and May 5, 2025 at on-Site monitoring wells equipped with pressure transducers/data recorders (MW-H-I, MW-F-I, and MW-I-I). Transducer data was downloaded, and the resulting water level data are illustrated on Figure 4. Historically and under typical conditions, MW-H-I groundwater elevations are greater than groundwater elevations at MW-I-I and MW-F-I groundwater elevations. The groundwater elevation data in Figure 4 depict short-term changes in groundwater flow directions.

Water levels at MW-H-I were greater than water levels at MW-I-I for entire second quarter monitoring period (March 18, 2025 – May 5, 2025) and MW-F-I for 92% of the second quarter monitoring period. The transducer data indicated that groundwater flow direction is primarily to

¹ 2021, Key Environmental Inc., 2020 Five Year Review Report, Howmet Former WearEver Site, Chillicothe, Ohio.

the east-northeast. Since the fourth quarter 2021, the groundwater flow has been primarily to the east-northeast (in the vicinity of MW-H-I, MW-I-I, and MW-F-I). Gauging data indicates that groundwater flow shifts more to the northeast at and beyond the property boundary toward Collector Wells 17 and 18.

Closure of the paper mill will likely result in shutdown of pumping operations of Pixelle production wells. Previous groundwater monitoring periods during low pumping or no pumping conditions at Collector Wells 17 and 18 indicate that groundwater beneath the Site will likely flow east-southeast toward the Scioto River and will be characterized by relatively low hydraulic gradients and low groundwater velocity. Enhanced monitoring and the installation of additional wells will be implemented to evaluate changes to the conceptual site model in the absence of Pixelle pumping well operations.

3.2 GROUNDWATER SAMPLE RESULTS

The quarterly sampling locations included in this second quarter sampling event for the Groundwater Plume Monitoring Network are provided in Table 1 of the GWMP (Appendix A).

The analytical data were evaluated in accordance with the National Functional Guidelines for Organic Data Review (USEPA, 2020). No major data validation issues were identified. The laboratory report and data validation are provided in Appendix B. The following subsection provides a summary of the groundwater sample analytical results collected during the Second Quarter 2025.

3.2.1 Quarterly Groundwater Plume Monitoring Network

The quarterly Plume Monitoring Well Network consists of wells MW-C-I, MW-D-S, MW-I-S, MW-OS-1-I, and MW-OS-2. Table 2, and the following, provides a summary of the second quarter sampling event VOC results from the quarterly monitoring wells.

- The second quarter sample collected from on-Site monitoring well MW-D-S had constituent of interest (COI) detections of trichloroethylene (TCE) at 100 J micrograms per liter (μg/l), cis-1,2-dichloroethylene (cis-DCE) at 15 μg/l, and trans-1,2dichloroethylene (trans-DCE) at 1.1 μg/l. TCE detected in the MW-D-S sample is the only COI that exceeds the federal Maximum Contaminant Limit (MCL).
- The sample collected from on-Site monitoring well MW-I-S has a detection of TCE at 2.3 μg/l. Figure 6 is a trend chart depicting the fluctuating TCE concentrations at perimeter well MW-I-S. No COI exceeded MCLs during the second quarter event.
- The sample collected from on-Site monitoring point MW-C-I had detections of the following constituents: 1,1-dichloroethylene (1,1-DCE) at 110 μg/l, cis-DCE at 2,500 μg/l, trans-DCE at 19 μg/l, TCE at 12 μg/l, and vinyl chloride at 190 μg/l. The detections of 1,1-DCE, cis-DCE, trans-DCE, and vinyl chloride

exceeded their respective MCLs. The second quarter chlorinated VOC concentrations at MW-C-I fall within the range of historical concentrations, which have been declining overall since 2013. Figure 7 illustrates the cis-DCE and vinyl chloride concentration trends at MW-C-I.

- The sample collected from off-Site monitoring well MW-OS-1-I has detections of 1,1-DCE at 40 μg/l, cis-DCE at 1,800 μg/l, trans-DCE at 8.4 μg/l, TCE at 39 μg/l, and vinyl chloride at 210 μg/l. The detections of 1,1-DCE, cis-DCE, TCE, and vinyl chloride exceeded their respective MCLs. Figure 8 depicts the trends of cis-DCE and vinyl chloride in monitoring well MW-OS-1-I. Although the cis-DCE and vinyl chloride concentrations fluctuate, the chart shows an overall downward trend.
- No Site-related COIs were detected at monitoring point MW-OS-2, which is located to the east of the Site.

Relationships between water levels and VOC concentrations for the period of 2010 to 2015 were examined during the development of the 2015 Five-Year Review Report. During that five-year window, water levels and total chlorinated VOC concentrations fluctuated seasonally, but VOC concentrations declined overall. During that period, total chlorinated VOC concentrations at MW-OS-1-I typically decreased with a seasonal decline in groundwater elevation (indicating positive correlation between water levels and VOC concentrations), whereas the opposite is typically true at MW-D-S (indicating negative correlation between water levels and VOC concentrations).

Sample results for the second quarter 2025 sampling event indicated detections of acetone in three samples, as indicated on Table 2. In accordance with Ohio EPA's letter dated November 12, 2019, KEY investigated the occurrence of acetone detections in groundwater samples from quarterly monitoring wells MW-D-S, MW-I-S, and MW-OS-2 from the previous five groundwater monitoring reports (from the third quarter 2018 to the third quarter 2019). It was determined that MW-I-S was the only monitoring well with consistent occurrences of acetone during that time period, as MW-D-S had two sampling events where acetone was below detection limits (first quarter 2019 and fourth quarter 2018), and MW-OS-2 had one sampling event where acetone was below detection limits (second quarter 2019).

Acetone is widely recognized as a common laboratory artifact because it is used to clean glassware and other laboratory equipment; however, acetone has not typically been detected in the method (lab) blanks during the sampling events. Acetone was identified as a Site constituent of interest in the 1996 Remedial Investigation (RI) Report (Marsh and ICF Kaiser, 1996) because the maximum concentration of 38,000 μ g/l exceeded the EPA Region 3 Tapwater RBC of 37,000 μ g/l. The recent concentrations of acetone are approximately three orders of magnitude below the maximum concentration noted in the RI (38,000 μ g/l), as well as the EPA Residential Tapwater Regional Screening Level (14,000 μ g/l). Therefore, although the recurring detections of acetone cannot conclusively be attributed to the laboratory contamination, KEY maintains that acetone is not considered a Site constituent of interest based on comparison of the reported concentrations to the EPA Residential Tapwater Regional Screening Level (RSL) for acetone.

4.0 EVALUATION

Section 6.3 of the approved GWMP presents specific criteria used to evaluate the monitoring data. Below are the criteria and the evaluation results from the second quarter 2025 monitoring activities.

4.1 QUARTERLY TRIGGER CRITERIA

- 1. Daily Water Levels: Daily water level elevation from MW-H-I, MW-I-I and MW-F-I.
 - The water level in MW-H-I should have a higher average elevation than both MW-I-I and MW-F-I.

Evaluation result: Met.

Figure 4 (hydrograph) depicts the elevation of the water table surface for the three wells outfitted with pressure transducers/data loggers. Average groundwater elevations in MW-H-I, MW-I-I, and MW-F-I were 589.65 ft, 588.83 ft, and 588.76 ft, respectively, for the March 18, 2025 to May 5, 2025 monitoring period. The transducer data indicated that MW-H-I water levels were greater than MW-I-I and MW-F-I for the monitoring period.

2. **Manual Water Levels**: The groundwater flow direction as determined from the manual measurements should not consistently flow in an easterly or southeasterly direction for two consecutive quarters along the eastern boundary of the Site.

Evaluation Result: Met.

The groundwater flow direction along the eastern boundary of the Site was toward the northeast during the fourth quarter event. An easterly or southeasterly flow direction along the eastern boundary of the Site was not observed for two consecutive quarters.

- 3. Sample Results: The following should be true:
- Site-related VOC concentrations meet the following criteria in all quarterly water quality samples from wells MW-I-S and MW-OS-2.
 - MCL not exceeded at the same well for two consecutive quarterly events; and,
 - None of these wells may exceed five times MCL in any one quarter.

Evaluation Result: Met.

Table 2 includes water quality data for the above-listed monitoring points.

• No site-related VOC constituents exceeded MCLs for MW-I-S and MW-OS-2 during the first quarter 2025 and second quarter 2025 sample events.

5.0 SUMMARY & RECOMMENDATIONS

All of the quarterly evaluation criteria were met during this monitoring period. As noted in Five-Year Review (FYR) reports for the Site going back to 2010, occasional variations in pumping rates at collector wells operated by Pixelle Specialty Solutions can temporarily modify groundwater flow direction beneath the Site area. A shift in groundwater flow direction to the southeast occurred from 2008 to 2013 as described in the 2010 and 2015 FYR reports. As described in the 2020 FYR report, it occurred again in 2020; however, since the fourth quarter 2021 monitoring event, the groundwater flow direction at the Site shifted back more to the east-northeast. Expanded potentiometric surface maps that include Pixelle observation wells show that groundwater is captured by Collector Wells 17 and 18 which were operational during this monitoring event. The groundwater flow direction gradually shifts more to the northeast at and beyond the eastern boundary of the Site.

The residences located southeast of the Site are connected to the municipal water supply, and despite the occasional transient southeast groundwater flow conditions, the water quality trigger criteria associated with the groundwater plume monitoring well network are consistently met. The concentrations of VOCs observed in groundwater samples collected from wells located near the southeastern property boundary that are routinely sampled per the GWMP continue to show an overall declining trend over time.

Several on-Site and off-Site wells located within the center of the plume near the northeastern property boundary (away from domestic wells located to the southeast) continue to have VOCs at concentrations that exceed MCLs. Trend graphs for these wells show concentrations continue to attenuate over time as anticipated by the selected remedy.

The sampling and gauging frequencies described in the GWMP (as described in Table 1 of Appendix A) will continue to be implemented. In addition to the sampling frequencies described in the GWMP, enhanced quarterly sampling will be completed starting with the third quarterly monitoring event at wells MW-D-I, MW-D D, MW-I-I, MW-G-S, MW-G-I, MW-G-D, and MW-OS-3. Howmet is also working with Ohio EPA to install additional monitoring wells to the east-southeast of the Site. With the anticipated cessation of Pixelle pumping wells, the groundwater flow direction, hydraulic gradients, and water quality data will continue to be closely characterized and evaluated. After the non-pumping steady state groundwater conditions are thoroughly characterized, an appropriate response action can be determined.

GROUNDWATER MONITORING SUMMARY SECOND QUARTER 2025 HOWMET FORMER WEAREVER SITE CHILLICOTHE, OH

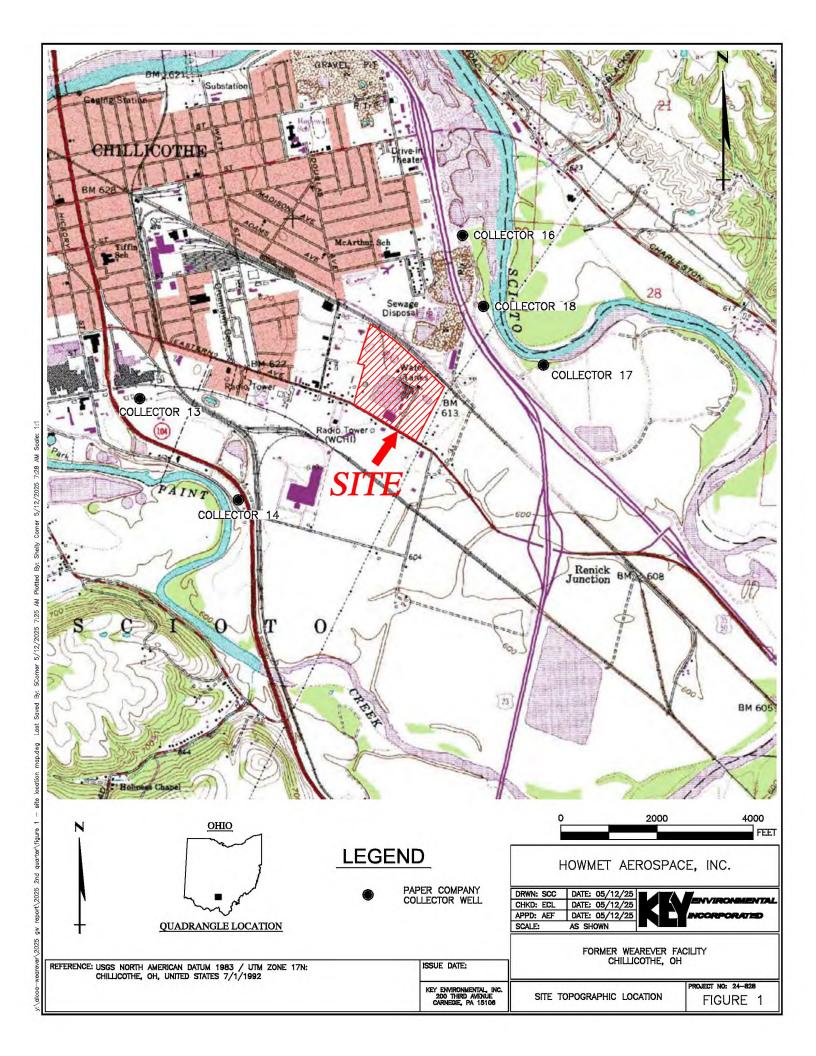
State Control Contro		592.28 591.63 591.19 591.12 591.08 591.28 590.93 590.83	1 1 1 1 1 1 1 1		1 1 1 1 1
torage 619.29 -I 612.94 -I 612.94 -I 612.94 -I 615.24 -I 617.45 -I 611.40 y Line Perimeter 616.06 613.30 611.53 611.64 621.41 614.90 614.90 614.90 610.01 Wells -I-I 610.33 -I-I 610.33 -I-I 610.33 Wells 619.54		592.28 591.63 591.19 591.12 591.08 591.28 590.93 590.83	1 1 1 1 1 1 1		1 1 1 11
		591.63 591.19 591.12 591.08 591.28 590.93 590.83			1 1 11
### 612.94 ####################################		591.63 591.19 591.12 591.08 591.28 590.93 590.83			1 1 11
## 615.24 ## 615.24 ## 617.45 ## 617.45 ## 617.45 ## 617.40 ## 617.83		591.19 591.12 591.08 592.01 591.28 590.93 590.83			
Perimeter 615.24 617.45 617.45 617.45 617.40 617.40 618.30 618.30 611.53 614.50 614.77 614.70 610.47 610.01 610.01 74 610.01 75 610.01 76 610.01 77 610.01 78 610.01 79 610.01 70 70 70 70 70 70 70 70		591.19 591.12 591.08 592.01 591.28 590.93 590.83			
y Line Perimeter 617.45 y Line Perimeter 616.06 613.30 611.53 611.64 611.53 614.77 614.90 614.90 610.17 610.17 610.17 610.18 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01		591.12 591.08 592.01 591.28 590.93 590.83			1 1
y Line Perimeter 611.40 y Line Perimeter 611.40 611.40 611.30 611.64 611.64 611.64 611.64 611.64 611.64 611.61 610.17 Wells 610.13 -1-1 610.33 -2-2 615.31 -3-3 612.10 Wells		591.12 591.08 592.01 591.28 590.93 590.83		1 1	1 1
y Line Perimeter 616.06 613.30 613.30 613.30 611.53 611.64 611.64 614.77 614.77 614.90 614.90 610.18 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01 610.01		591.08 592.01 591.28 590.93 590.83		1	-
y Line Perimeter 616.06 613.30 611.53 611.64 611.64 614.77 614.77 614.90 614.90 610.18 610.01 610.01 610.03 -1-1 610.33 -2 612.10 Wells 619.54		592.01 591.28 590.93 590.83			
616.06 613.30 611.53 611.64 621.41 621.47 614.77 614.90 610.47 610.18 610.01 610.01 610.33 -1-1 610.33 612.10 619.54		592.01 591.28 590.93 590.83	1 1 1		
613.30 611.53 611.64 621.41 621.47 614.90 610.47 610.18 610.01 610.01 610.01 610.03 610.33		590.93	1 1	ı	-
611.53 611.64 621.41 621.41 614.90 610.47 610.18 610.01 610.01 610.01 610.01 610.03 610.33 612.10 612.10 612.10		590.93	*	1	-
611.64 621.41 614.90 614.90 610.47 610.18 610.01 610.01 610.03 610.33 612.10 612.10 619.54		590.83		1	-
621.41 614.77 614.90 610.47 610.18 610.01 610.01 610.01 610.33 -1-1 610.33 612.10 Wells 619.54		590 39	MW-C-I	5/5/2025	1020
## 619.77 614.90 610.47 610.47 610.18 610.01 610.01 610.33 612.10 Wells Wells 619.54		200.00	1	1	1
Weils 619.54 Wells 610.13 Wells 619.54 Wells 619.54		590.36	WW-D-S	5/5/2025	1110
Melis 610.47 Wells 610.01 Wells 610.33 -2 615.31 Wells 619.54	62.29	590.29	1	-	-
Wells 610.01 Wells 610.01 -1- 610.33 -2 615.31 Wells 619.54		590.35	S-I-WM	5/5/2025	1200
Wells 610.01 -1-1 610.33 -2 615.31 -3 612.10 Wells 619.54	61.81 19.65	590.53	-	-	-
-1-1 610.33 -2 615.31 -3 612.10 Wells 619.54	60.10 19.04	590.97	-	-	1
-1-1 610.33 -2 615.31 -3 612.10 Wells 619.54					
-2 615.31 -3 612.10 Wells 619.54	61.79 20.01	590.32	MW-OS-1-I, M-99	5/5/2025	1250
-3 612.10 Wells 619.54		589.50	MW-0S-2	5/5/2025	1315
Wells 619.54		589.70	1	1	-
619.54					
	NM 39.54	280.00	-	-	-
OW-14 614.08 79.20	79.20 24.13	589.95	1	-	,
617.70	92.86 58.26	559.44		-	-
OW-17 606.24 79.69		576.29	-	-	-
OW-18 619.84 80.01	80.01 41.25	578.59		1	0.50
OW-74 619.41 92.91	92.91	590.20	-	1	1
OW-20 605.60 39.80	39.80 13.43	592.17	-	-	-

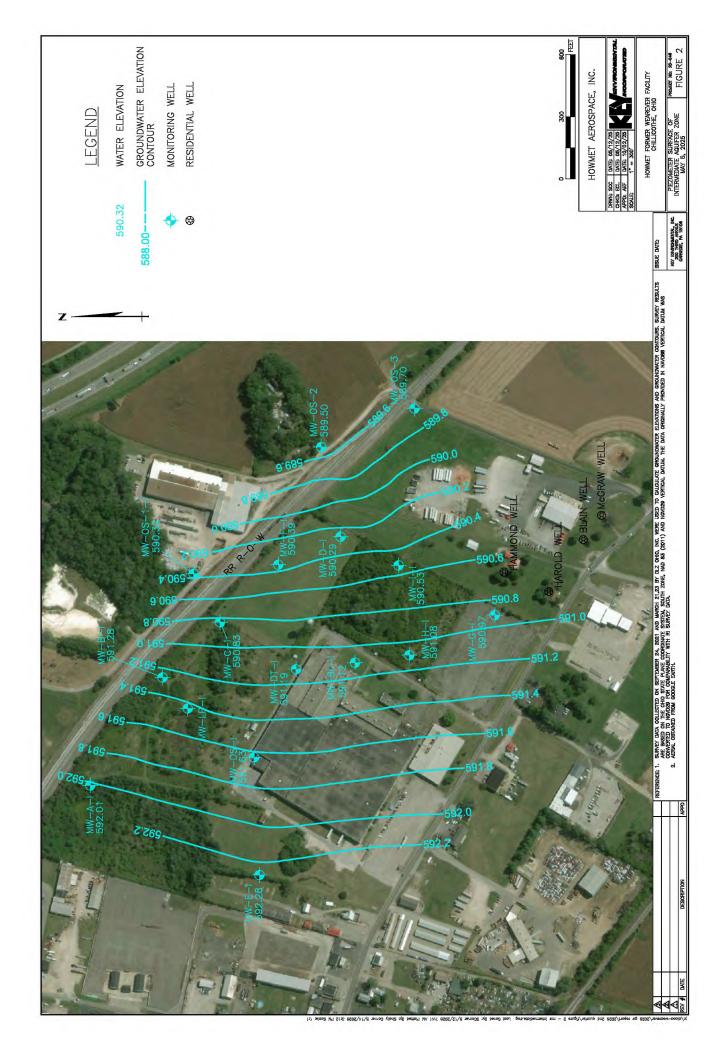
Updated elevation TOC data collected on September 24, 2021 and March 20, 2023 by DLZ Ohio, inc. Pixelle observation well survey data obtained from Pixelle. Elevation TOC data provided in reference to NGVD29.

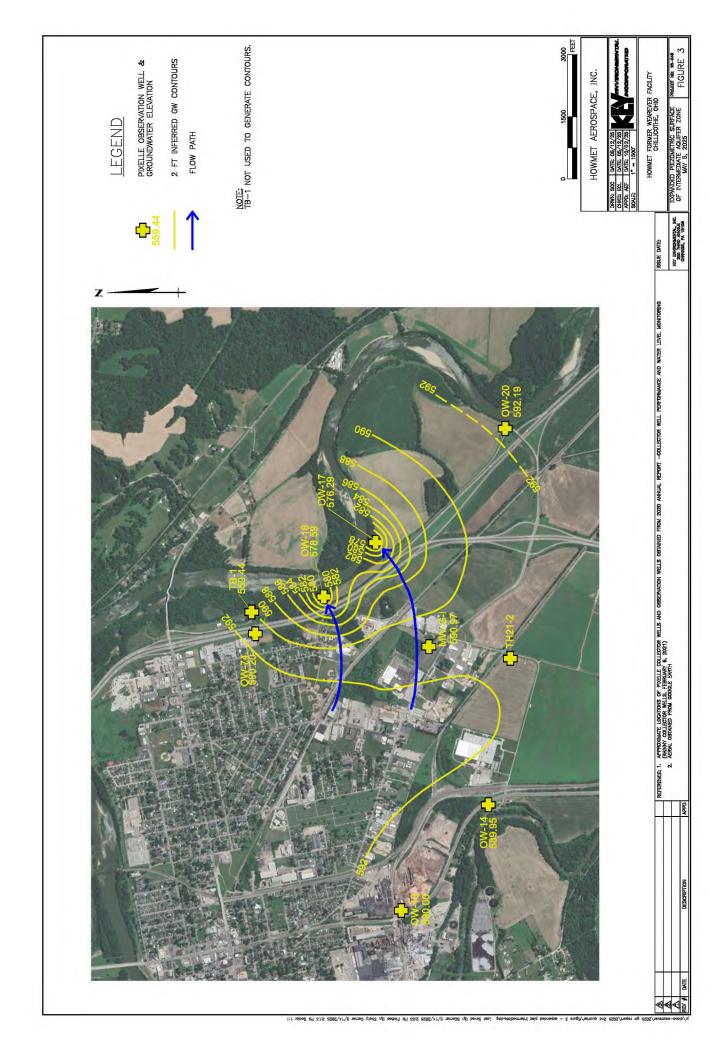
TABLE 2
SUMMARY OF VOC DETECTIONS
QUARTERLY GROUNDWATER PLUME MONITORING NETWORK
SECOND QUARTER 2025
HOWMET FORMER WEAREVER SITE
CHILLICOTHE, OH

		Maximum	MW-C-I	WW-D-S	S-I-WM	MW-0S-1-I	I-1-80-WM	MW-0S-02
Sample ID		Contaminant	MW-C-I	MW-D-S	WW-I-S	MW-0S-1-I	66-M	MW-0S-2
		Levels (MCLs)	5/5/2025	5/5/2025	5/5/2025	5/5/2025	5/5/2025	5/5/2025
Monitoring Location			MW-C-I	MW-D-S	WW-I-S	MW-0S-1-I	MW-0S-1-I	MW-OS-02
CONSTITUENT	UNITS							
1,1-Dichloroethylene	l/gn	7	110	0.49 U	0.49 U	40	38	0.49 U
Acetone	l/gn		150	6.1 J	8.2 J	27 U	5.4 U	5.4 U
cis-1,2-Dichloroethylene	l/gn	70	2500	15	0.46 U	1800	1700	0.46 U
trans-1,2-Dichloroethylene	l/gn	100	19	1.1	0.51 U	8.4	8.3	0.51 U
Trichloroethylene	l/gn	5	12	100 J	2.3	39	40	0.44 U
Vinyl chloride	l/gn	2	190	0.45 U	0.45 U	210	200	0.45 U

Notes:


U = constituent not detected at the reported concentration


J = estimated concentration


Bold = constituent detected

Highlighted - constituent exceeds MCLs

malfunctioned on 2/17/2022 and was reinstalled on 6/9/2022 MW-F-I transducer 1443 (MW-F-I) barometric pressure transducer malfunctioned on 7/23/2020 and was reinstalled on 11/19/2020 -1424 (MW-I-I) —1416 (MW-H-I) MW-H-I transducer malfunctinoed on 9/9/2015 transducers were reinstalled on 12/21/2015 MW-I-I and MW-H-I MW-I-I transducer malfunctioned on 6/17/2015 MW-F-I transducer malfunctioned on 9/24/2013 and was reinstalled on 2/6/2014 585 583 595 593 581 597 591 589 587 Elevation (feet)

Figure 4
Hydrograph - Groundwater Level Recorders
October 12, 2012 - May 5, 2025

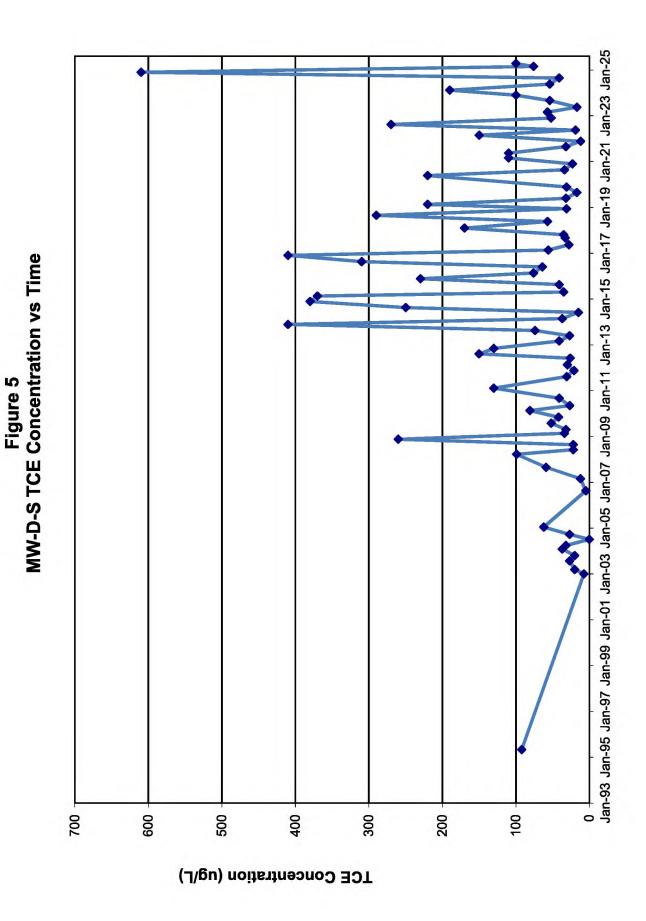
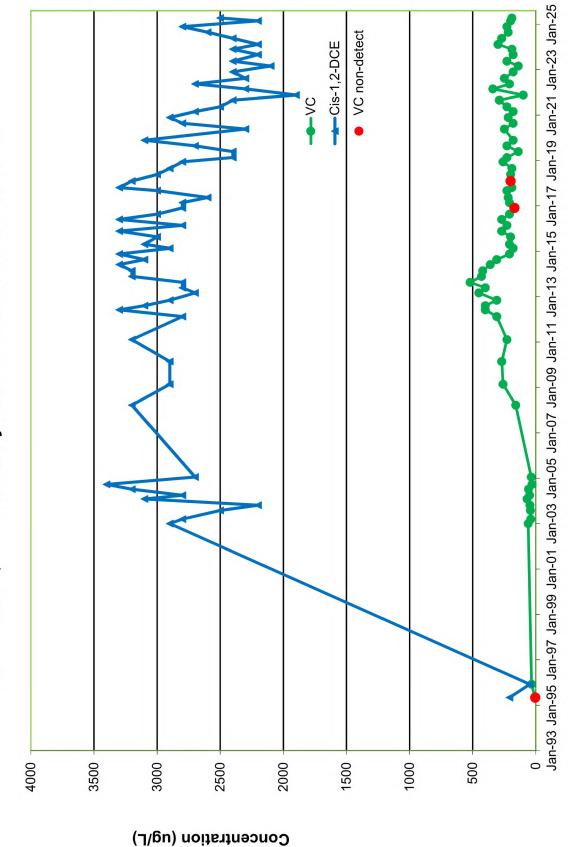



Figure 6
MW-I-S TCE Concentration vs Time ∞

TCE Concentration (ug/L)

Figure 7 MW-C-I Cis-1,2-DCE and Vinyl Chloride Concentration vs Time

Jan-25 VC non-detect ———Cis-1,2-DCE Jan-23 → VC Jan-21 Figure 8 MW-OS-1-I Cis-1,2-DCE and Vinyl Chloride Concentration vs Time Jan-19 Jan-17 Jan-15 Jan-13 Jan-11 Jan-09 Jan-07 Jan-05 Jan-03 0 Jan-01 2500 3000 1000 1500 200 2000 Concentration (ug/L)

APPENDIX A

Figure 2 and Table 1 from Groundwater Monitoring Plan

APPENDIX A

Figure 2 and Table 1 from Groundwater Monitoring Plan

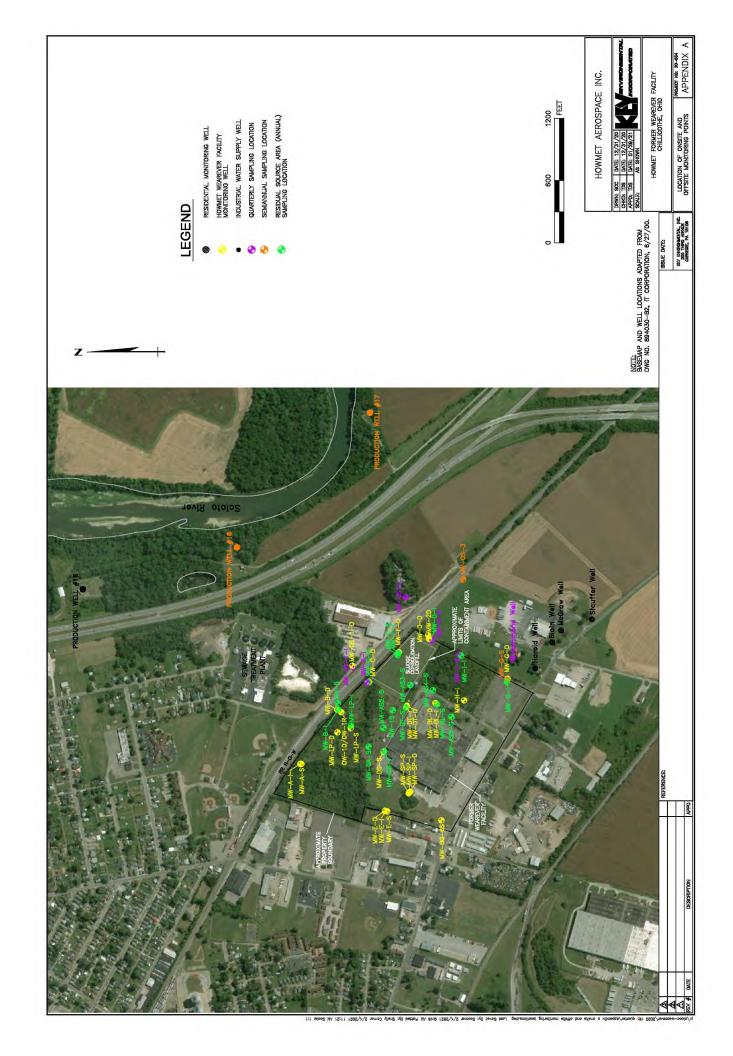


TABLE 1 GROUNDWATER MONITORING SUMMARY

		QUARTERLY		SEMIA	SEMIANNUAL	ANNOAL	JAL
	(MARCH, JUNE, SEPT	INE, SEPTEMBER, I	EMBER, DECEMBER)	IN ADDI' QUARTERLY (MARCH, SI	IN ADDITION TO QUARTERLY MONITORING (MARCH, SEPTEMBER)	IN ADDITION TO QUARTERLY AND SEMIANNUAL MONITORING (MARCH)	O QUARTERLY AL MONITORING (CH)
MONITORING WELL NO.	DOWNLOAD AUTOMATED GROUNDWATER LEVELS	GROUNDWATER LEVELS FOR FLOW DIRECTION, INTERMEDIATE ZONE	GROUNDWATER SAMPLING FOR PLUME LOCATION (VOCS) ¹	GROUNDWATER LEVELS FOR FLOW DIRECTION, ALL ZONES	GROUNDWATER SAMPLING FOR PLUME LOCATION (VOCS) ¹	OBTAIN FLOW RATES FROM CHILLICOTHE PAPER INDUSTRIAL WELLS ²	GROUNDWATER SAMPLING FOR REMEDIAL SOURCE AREA MONITORING (VOCS) ¹
Up Gradient							
MW-BG-S							
MW-E-S				×			
MW-E-I		×					
MW-E-D				×			
Sludge Pit							
MW-SP-S							
MW-SP-I							
MW-SP-D							
Drum Storage							
MW-DS-S				×			
MW-DS-I		×					×
MW-DS-D							
Draw Tank							
MW-DT-S				×			×
MW-DT-I		×					
MW-DT-D				×			
Leach Pit							
WW-LP-S							
MW-LP-I							×
MW-LP-D							
Building Perimeter							
MW-1S							×
MW-AS2-S							×
MW-AS3-S							×
MW-AS4-S							×
MW-AS5-S							×
MW-BL-S				×			×
MW-BL-I		×					
MW-BL-D				×			
MW-GA-S							×
MW LI	>	>			*		

TABLE 1
GROUNDWATER MONITORING SUMMARY

				7 ::::::	DEMINIMONE	ANNOAL	1
	(MARCH, JL	(MARCH, JUNE, SEPTEMBER, DECEMBER)	DECEMBER)	IN ADDI' QUARTERLY (MARCH, SE	IN ADDITION TO QUARTERLY MONITORING (MARCH, SEPTEMBER)	IN ADDITION TO QUARTERLY AND SEMIANNUAL MONITORING (MARCH)	QUARTERLY L MONITORING CH)
MONITORING WELL NO.	DOWNLOAD AUTOMATED GROUNDWATER LEVELS	GROUNDWATER LEVELS FOR FLOW DIRECTION, INTERMEDIATE ZONE	GROUNDWATER SAMPLING FOR PLUME LOCATION (VOCS) ¹	GROUNDWATER LEVELS FOR FLOW DIRECTION, ALL ZONES	GROUNDWATER SAMPLING FOR PLUME LOCATION (VOCS) ¹	OBTAIN FLOW RATES FROM CHILLICOTHE PAPER INDUSTRIAL WELLS ²	GROUNDWATER SAMPLING FOR REMEDIAL SOURCE AREA MONITORING (VOCS) ¹
Property Line Perimeter	16						
MW-2D							
MW-5				×			×
MW-A-I		×					
MW-A-S				×			
MW-B-I		×					×
MW-B-D				×			
MW-C-S				×			×
MW-C-I		×	×				
MW-C-D				×			
MW-F-S				×			×
MW-F-I	×	×					×
MW-F-D				×			
WW-D-S		×	×				
MW-D-I		×					×
MW-D-D				×			
MW-I-S		×	×				
MW-I-I	×	×					×
MW-G-S				×	×		
MW-G-I		×					×
MW-G-D				×			
OW-1D							
OW-1R							
Off Site Wells	8 3						
Hammond			**				
MW-0S-1-I		×	X				
MW-0S-1-D				×			
MW-0S-2		×	X				
MW-0S-3		×			X		
Chillicothe Paper Pumping Wells	ping Wells						
Chillicothe Paper 13						×	
Chillicothe Paper 14						×	
Chillicothe Paper 16						×	
Chillicothe Paper 17					×	×	
Chillicothe Paper 18					×	×	

Notes:

VOC analysis by USEPA SW-846 Method 8260B.

*Obtained annually from Chillicothe Paper's monthly data summary reports.

^{*}Based on the revised 3rd 5 Year Review submitted by KEY and the cooresponding OEPA approval letter on September 7, 2016, sampling is no longer required at wells MW-D-D and MW-H-I.

^{**}Based on the revised 3rd 5 Year Review submitted by KEY and the cooresponding OEPA approval letter on September 7, 2016, sampling is no longer required at the Hammond well, contingent upon ground water flow direction remaining north/northeastward away from the Hammond well.

APPENDIX B

Laboratory Results and Data Validation Report

ANALYTICAL REPORT

PREPARED FOR

Attn: Angela Gatchie Key Environmental, Inc 200 Third Avenue Carnegie, Pennsylvania 15106

Generated 7/14/2025 3:44:43 PM Revision 1

JOB DESCRIPTION

Alcoa - Wearever - Chillicothe

JOB NUMBER

240-223713-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Helpman

Authorized for release by Shali Brown, Project Manager II Shali.Brown@et.eurofinsus.com (615)301-5031

Generated 7/14/2025 3:44:43 PM Revision 1

1

4

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	1
Case Narrative	5
Method Summary	3
Sample Summary	7
Detection Summary	3
Client Sample Results)
Surrogate Summary	19
QC Sample Results	20
QC Association Summary	27
Lab Chronicle	28
Certification Summary	30
Chain of Custody	31

5

7

9

10

12

Definitions/Glossary

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Job ID: 240-223713-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

E Result exceeded calibration range.

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations mag	ly or may not be present in this report
--------------	----------------	------------------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

7

8

2

11

14

Eurofins Cleveland

Case Narrative

Client: Key Environmental, Inc.

Job ID: 240-223713-1 Project: Alcoa - Wearever - Chillicothe

Job ID: 240-223713-1 **Eurofins Cleveland**

Job Narrative 240-223713-1

071425 Revised report to add a comment concerning MS MSD on the following sample: MW-D-S (240-223713-2 This report replaces the report previously issued on 051525.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/6/2025 9:20 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.8°C.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) analyzed in batch 240-655564 was outside the method criteria for the following analyte(s): Bromomethane and Chloroethane. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260D: The continuing calibration verification (CCV) associated with batch 240-655733 recovered above the upper control limit for Carbon disulfide. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are: MW-C-I (240-223713-1), MW-I-S (240-223713-3), MW-OS-1-I (240-223713-4) and MW-OS-2 (240-223713-6).

Method 8260D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 240-655733 were outside expected recovery/control limits for Trichloroethene. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. The undiluted analysis of this sample and MS/MSD MW-D-S (240-223713-2), MW-D-S (240-223713-2[MS]) and MW-D-S (240-223713-2[MSD]) displayed a similar problem with Trichloroethene but not as bad.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method Summary

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

MethodMethod DescriptionProtocolLaboratory8260DVolatile Organic Compounds by GC/MSSW846EET CLE5030CPurge and TrapSW846EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Job ID: 240-223713-1

1

7

7

8

3

4 1

14

Sample Summary

Client: Key Environmental, Inc Project/Site: Alcoa - Wearever - Chillicothe

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-223713-1	MW-C-I	Water	05/05/25 10:20	05/06/25 09:20
240-223713-2	MW-D-S	Water	05/05/25 11:10	05/06/25 09:20
240-223713-3	MW-I-S	Water	05/05/25 12:00	05/06/25 09:20
240-223713-4	MW-OS-1-I	Water	05/05/25 12:50	05/06/25 09:20
240-223713-5	M-99	Water	05/05/25 00:00	05/06/25 09:20
240-223713-6	MW-OS-2	Water	05/05/25 13:15	05/06/25 09:20
240-223713-7	TB-1	Water	05/05/25 05:00	05/06/25 09:20

Job ID: 240-223713-1

Detection Summary

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-C-I Lab Sample ID: 240-223713-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2500		50	23	ug/L	50	_	8260D	Total/NA
1,1-Dichloroethene - RA	110		5.0	2.5	ug/L	5		8260D	Total/NA
Acetone - RA	150		50	27	ug/L	5		8260D	Total/NA
trans-1,2-Dichloroethene - RA	19		5.0	2.6	ug/L	5		8260D	Total/NA
Trichloroethene - RA	12		5.0	2.2	ug/L	5		8260D	Total/NA
Vinvl chloride - RA	190		5.0	2.3	ua/L	5		8260D	Total/NA

Client Sample ID: MW-D-S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I	Method	Prep Type
Trichloroethene	100	F1	2.0	0.88	ug/L	2	8260D	Total/NA
Acetone - RA	6.1	J	10	5.4	ug/L	1	8260D	Total/NA
cis-1,2-Dichloroethene - RA	15		1.0	0.46	ug/L	1	8260D	Total/NA
trans-1,2-Dichloroethene - RA	1.1		1.0	0.51	ug/L	1	8260D	Total/NA
Trichloroethene - RA	100	E	1.0	0.44	ug/L	1	8260D	Total/NA

Client Sample ID: MW-I-S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	8.2	J	10	5.4	ug/L	1	_	8260D	Total/NA
Trichloroethene	2.3		1.0	0.44	ug/L	1		8260D	Total/NA

Client Sample ID: MW-OS-1-I

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1800	50	23	ug/L	50	_	8260D	Total/NA
1,1-Dichloroethene - RA	40	5.0	2.5	ug/L	5		8260D	Total/NA
trans-1,2-Dichloroethene - RA	8.4	5.0	2.6	ug/L	5		8260D	Total/NA
Trichloroethene - RA	39	5.0	2.2	ug/L	5		8260D	Total/NA
Vinyl chloride - RA	210	5.0	2.3	ug/L	5		8260D	Total/NA

Client Sample ID: M-99

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	38		1.0	0.49	ug/L	1	_	8260D	Total/NA
cis-1,2-Dichloroethene	1700		40	18	ug/L	40		8260D	Total/NA
trans-1,2-Dichloroethene	8.3		1.0	0.51	ug/L	1		8260D	Total/NA
Trichloroethene	40		1.0	0.44	ug/L	1		8260D	Total/NA
Vinyl chloride	200		40	18	ug/L	40		8260D	Total/NA

Client Sample ID: MW-OS-2

No Detections.

Client	Samp	le ID:	IB-1
--------	------	--------	------

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 240-223713-1

Lab Sample ID: 240-223713-2

Lab Sample ID: 240-223713-3

Lab Sample ID: 240-223713-4

5

7

9

10

12

14

14

Lab Sample ID: 240-223713-5

Lab Sample ID: 240-223713-6

Lab Sample ID: 240-223713-7

7/14/2025 (Rev. 1)

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Lab Sample ID: 240-223713-1 Client Sample ID: MW-C-I

Date Collected: 05/05/25 10:20 Date Received: 05/06/25 09:20

Matrix: Water

Job ID: 240-223713-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	2500		50	23	ug/L			05/12/25 19:30	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		62 - 137					05/12/25 19:30	50
4-Bromofluorobenzene (Surr)	103		56 ₋ 136					05/12/25 19:30	50
Toluene-d8 (Surr)	103		78 - 122					05/12/25 19:30	50
Dibromofluoromethane (Surr)	109		73 - 120					05/12/25 19:30	50

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	2.4	ug/L			05/13/25 19:52	5
1,1,2,2-Tetrachloroethane	ND		5.0	3.0	ug/L			05/13/25 19:52	5
1,1,2-Trichloroethane	ND		5.0	2.4	ug/L			05/13/25 19:52	5
1,1-Dichloroethane	ND		5.0	2.4	ug/L			05/13/25 19:52	5
1,1-Dichloroethene	110		5.0	2.5	ug/L			05/13/25 19:52	5
1,2-Dichloroethane	ND		5.0	2.3	ug/L			05/13/25 19:52	5
1,2-Dichloropropane	ND		5.0	2.4	ug/L			05/13/25 19:52	5
2-Hexanone	ND		50	5.6	ug/L			05/13/25 19:52	5
Acetone	150		50	27	ug/L			05/13/25 19:52	5
Benzene	ND		5.0	2.1	ug/L			05/13/25 19:52	5
Bromoform	ND		5.0	3.8	ug/L			05/13/25 19:52	5
Bromomethane	ND		5.0	2.1	ug/L			05/13/25 19:52	5
Carbon disulfide	ND		5.0	3.0	ug/L			05/13/25 19:52	5
Carbon tetrachloride	ND		5.0	1.3	ug/L			05/13/25 19:52	5
Chlorobenzene	ND		5.0		ug/L			05/13/25 19:52	5
Chloroethane	ND		5.0	4.2	ug/L			05/13/25 19:52	5
Chloroform	ND		5.0		ug/L			05/13/25 19:52	5
Chloromethane	ND		5.0	3.2	ug/L			05/13/25 19:52	5
cis-1,3-Dichloropropene	ND		5.0		ug/L			05/13/25 19:52	5
Dichlorobromomethane	ND		5.0		ug/L			05/13/25 19:52	5
Ethylbenzene	ND		5.0	2.1	ug/L			05/13/25 19:52	5
Hexane	ND		5.0	1.9	ug/L			05/13/25 19:52	5
m-Xylene & p-Xylene	ND		10	2.1	ug/L			05/13/25 19:52	5
2-Butanone (MEK)	ND		50	5.8	ug/L			05/13/25 19:52	5
4-Methyl-2-pentanone (MIBK)	ND		50	5.0	ug/L			05/13/25 19:52	5
Methylene Chloride	ND		25		ug/L			05/13/25 19:52	5
o-Xylene	ND		5.0		ug/L			05/13/25 19:52	5
Styrene	ND		5.0		ug/L			05/13/25 19:52	5
Tetrachloroethene	ND		5.0		ug/L			05/13/25 19:52	5
Toluene	ND		5.0		ug/L			05/13/25 19:52	5
trans-1,2-Dichloroethene	19		5.0		ug/L			05/13/25 19:52	5
trans-1,3-Dichloropropene	ND		5.0		ug/L			05/13/25 19:52	5
Trichloroethene	12		5.0		ug/L			05/13/25 19:52	5
Vinyl chloride	190		5.0		ug/L			05/13/25 19:52	5
Xylenes, Total	ND		10		ug/L			05/13/25 19:52	5
Chlorodibromomethane	ND		5.0		ug/L			05/13/25 19:52	5
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137			-		05/13/25 19:52	5
			E0 400					05/40/05 46 55	_

Eurofins Cleveland

05/13/25 19:52

56 - 136

105

4-Bromofluorobenzene (Surr)

Client: Key Environmental, Inc Job ID: 240-223713-1

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-C-I Lab Sample ID: 240-223713-1

Matrix: Water

Date Collected: 05/05/25 10:20 Date Received: 05/06/25 09:20

Method: SW846 8260D - Volatile Organic Compounds by GC/MS - RA (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109	78 - 122		05/13/25 19:52	5
Dibromofluoromethane (Surr)	113	73 - 120		05/13/25 19:52	5

3

5

6

8

9

11

13

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-D-S Lab Sample ID: 240-223713-2

Date Collected: 05/05/25 11:10 Date Received: 05/06/25 09:20

Matrix: Water

Job ID: 240-223713-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	100	F1	2.0	0.88	ug/L			05/13/25 18:42	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		62 - 137					05/13/25 18:42	2
4-Bromofluorobenzene (Surr)	89		56 ₋ 136					05/13/25 18:42	2
Toluene-d8 (Surr)	95		78 - 122					05/13/25 18:42	2
Dibromofluoromethane (Surr)	103		73 - 120					05/13/25 18:42	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.48	ug/L			05/12/25 19:54	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.60	ug/L			05/12/25 19:54	1
1,1,2-Trichloroethane	ND		1.0	0.48	ug/L			05/12/25 19:54	1
1,1-Dichloroethane	ND		1.0	0.47	ug/L			05/12/25 19:54	1
1,1-Dichloroethene	ND		1.0	0.49	ug/L			05/12/25 19:54	1
1,2-Dichloroethane	ND		1.0	0.46	ug/L			05/12/25 19:54	1
1,2-Dichloropropane	ND		1.0	0.47	ug/L			05/12/25 19:54	1
2-Hexanone	ND		10	1.1	ug/L			05/12/25 19:54	1
Acetone	6.1	J	10	5.4	ug/L			05/12/25 19:54	1
Benzene	ND		1.0	0.42	ug/L			05/12/25 19:54	1
Bromoform	ND		1.0		ug/L			05/12/25 19:54	1
Bromomethane	ND		1.0	0.42	ug/L			05/12/25 19:54	1
Carbon disulfide	ND		1.0	0.59	ug/L			05/12/25 19:54	1
Carbon tetrachloride	ND		1.0	0.26	ug/L			05/12/25 19:54	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/12/25 19:54	1
Chloroethane	ND		1.0	0.83	ug/L			05/12/25 19:54	1
Chloroform	ND		1.0	0.47	ug/L			05/12/25 19:54	1
Chloromethane	ND		1.0	0.63	ug/L			05/12/25 19:54	1
cis-1,2-Dichloroethene	15		1.0	0.46	ug/L			05/12/25 19:54	1
cis-1,3-Dichloropropene	ND		1.0	0.61	ug/L			05/12/25 19:54	1
Dichlorobromomethane	ND		1.0	0.38	ug/L			05/12/25 19:54	1
Ethylbenzene	ND		1.0	0.42	ug/L			05/12/25 19:54	1
Hexane	ND		1.0	0.37	ug/L			05/12/25 19:54	1
m-Xylene & p-Xylene	ND		2.0	0.42	ug/L			05/12/25 19:54	1
2-Butanone (MEK)	ND		10	1.2	ug/L			05/12/25 19:54	1
4-Methyl-2-pentanone (MIBK)	ND		10	0.99	ug/L			05/12/25 19:54	1
Methylene Chloride	ND		5.0	2.6	ug/L			05/12/25 19:54	1
o-Xylene	ND		1.0	0.42	ug/L			05/12/25 19:54	1
Styrene	ND		1.0	0.45	ug/L			05/12/25 19:54	1
Tetrachloroethene	ND		1.0	0.44	ug/L			05/12/25 19:54	1
Toluene	ND		1.0	0.44	ug/L			05/12/25 19:54	1
trans-1,2-Dichloroethene	1.1		1.0	0.51	ug/L			05/12/25 19:54	1
trans-1,3-Dichloropropene	ND		1.0	0.67	ug/L			05/12/25 19:54	1
Trichloroethene	100	E	1.0	0.44	ug/L			05/12/25 19:54	1
Vinyl chloride	ND		1.0		ug/L			05/12/25 19:54	1
Xylenes, Total	ND		2.0	0.42	ug/L			05/12/25 19:54	1
Chlorodibromomethane	ND		1.0	0.39	ug/L			05/12/25 19:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	-	62 - 137					05/12/25 19:54	1

Client: Key Environmental, Inc Job ID: 240-223713-1

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-D-S

Lab Sample ID: 240-223713-2

Date Collected: 05/05/25 11:10 Matrix: Water Date Received: 05/06/25 09:20

Method: SW846 8260D - Volatile Organic Compounds by GC/MS - RA (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90	56 - 136		05/12/25 19:54	1
Toluene-d8 (Surr)	96	78 - 122		05/12/25 19:54	1
Dibromofluoromethane (Surr)	100	73 - 120		05/12/25 19:54	1

_/

9

11

Client: Key Environmental, Inc

Dibromofluoromethane (Surr)

Project/Site: Alcoa - Wearever - Chillicothe

Lab Sample ID: 240-223713-3 **Client Sample ID: MW-I-S**

Date Collected: 05/05/25 12:00 **Matrix: Water** Date Received: 05/06/25 09:20

Analyte	Result (Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.48	ug/L			05/13/25 17:32	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.60	ug/L			05/13/25 17:32	1
1,1,2-Trichloroethane	ND		1.0	0.48	ug/L			05/13/25 17:32	1
1,1-Dichloroethane	ND		1.0	0.47	ug/L			05/13/25 17:32	1
1,1-Dichloroethene	ND		1.0	0.49	ug/L			05/13/25 17:32	1
1,2-Dichloroethane	ND		1.0	0.46	ug/L			05/13/25 17:32	1
1,2-Dichloropropane	ND		1.0	0.47	ug/L			05/13/25 17:32	1
2-Hexanone	ND		10	1.1	ug/L			05/13/25 17:32	1
Acetone	8.2	J	10	5.4	ug/L			05/13/25 17:32	1
Benzene	ND		1.0	0.42	ug/L			05/13/25 17:32	1
Bromoform	ND		1.0	0.76	ug/L			05/13/25 17:32	1
Bromomethane	ND		1.0	0.42	ug/L			05/13/25 17:32	1
Carbon disulfide	ND		1.0	0.59	ug/L			05/13/25 17:32	1
Carbon tetrachloride	ND		1.0	0.26	ug/L			05/13/25 17:32	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/13/25 17:32	1
Chloroethane	ND		1.0	0.83	ug/L			05/13/25 17:32	1
Chloroform	ND		1.0	0.47	ug/L			05/13/25 17:32	1
Chloromethane	ND		1.0	0.63	ug/L			05/13/25 17:32	1
cis-1,2-Dichloroethene	ND		1.0	0.46	ug/L			05/13/25 17:32	1
cis-1,3-Dichloropropene	ND		1.0	0.61	ug/L			05/13/25 17:32	1
Dichlorobromomethane	ND		1.0	0.38	ug/L			05/13/25 17:32	1
Ethylbenzene	ND		1.0	0.42	ug/L			05/13/25 17:32	1
Hexane	ND		1.0	0.37	ug/L			05/13/25 17:32	1
m-Xylene & p-Xylene	ND		2.0	0.42	ug/L			05/13/25 17:32	1
2-Butanone (MEK)	ND		10	1.2	ug/L			05/13/25 17:32	1
4-Methyl-2-pentanone (MIBK)	ND		10	0.99	ug/L			05/13/25 17:32	1
Methylene Chloride	ND		5.0	2.6	ug/L			05/13/25 17:32	1
o-Xylene	ND		1.0	0.42	ug/L			05/13/25 17:32	1
Styrene	ND		1.0	0.45	ug/L			05/13/25 17:32	1
Tetrachloroethene	ND		1.0	0.44	ug/L			05/13/25 17:32	1
Toluene	ND		1.0	0.44	ug/L			05/13/25 17:32	1
trans-1,2-Dichloroethene	ND		1.0	0.51	ug/L			05/13/25 17:32	1
trans-1,3-Dichloropropene	ND		1.0	0.67	ug/L			05/13/25 17:32	1
Trichloroethene	2.3		1.0	0.44	ug/L			05/13/25 17:32	1
Vinyl chloride	ND		1.0	0.45	ug/L			05/13/25 17:32	1
Xylenes, Total	ND		2.0	0.42	ug/L			05/13/25 17:32	1
Chlorodibromomethane	ND		1.0	0.39	ug/L			05/13/25 17:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		62 - 137					05/13/25 17:32	1
4-Bromofluorobenzene (Surr)	90		56 - 136					05/13/25 17:32	1
Toluene-d8 (Surr)	94		78 - 122					05/13/25 17:32	1
D" " " (O)								05/40/05 47 00	

05/13/25 17:32

73 - 120

102

Job ID: 240-223713-1

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-OS-1-I

Date Collected: 05/05/25 12:50 Date Received: 05/06/25 09:20

Lab Sample ID: 240-223713-4

Matrix: Water

Job ID: 240-223713-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1800		50	23	ug/L			05/12/25 22:14	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		62 - 137					05/12/25 22:14	50
4-Bromofluorobenzene (Surr)	102		56 ₋ 136					05/12/25 22:14	50
Toluene-d8 (Surr)	104		78 - 122					05/12/25 22:14	50
Dibromofluoromethane (Surr)	111		73 - 120					05/12/25 22:14	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	2.4	ug/L			05/13/25 20:16	5
1,1,2,2-Tetrachloroethane	ND		5.0	3.0	ug/L			05/13/25 20:16	5
1,1,2-Trichloroethane	ND		5.0	2.4	ug/L			05/13/25 20:16	5
1,1-Dichloroethane	ND		5.0	2.4	ug/L			05/13/25 20:16	5
1,1-Dichloroethene	40		5.0	2.5	ug/L			05/13/25 20:16	5
1,2-Dichloroethane	ND		5.0	2.3	ug/L			05/13/25 20:16	5
1,2-Dichloropropane	ND		5.0	2.4	ug/L			05/13/25 20:16	5
2-Hexanone	ND		50	5.6	ug/L			05/13/25 20:16	5
Acetone	ND		50	27	ug/L			05/13/25 20:16	5
Benzene	ND		5.0	2.1	ug/L			05/13/25 20:16	5
Bromoform	ND		5.0	3.8	ug/L			05/13/25 20:16	5
Bromomethane	ND		5.0	2.1	ug/L			05/13/25 20:16	5
Carbon disulfide	ND		5.0	3.0	ug/L			05/13/25 20:16	5
Carbon tetrachloride	ND		5.0	1.3	ug/L			05/13/25 20:16	5
Chlorobenzene	ND		5.0	1.9	ug/L			05/13/25 20:16	5
Chloroethane	ND		5.0	4.2	ug/L			05/13/25 20:16	5
Chloroform	ND		5.0	2.4	ug/L			05/13/25 20:16	5
Chloromethane	ND		5.0	3.2	ug/L			05/13/25 20:16	5
cis-1,3-Dichloropropene	ND		5.0		ug/L			05/13/25 20:16	5
Dichlorobromomethane	ND		5.0	1.9	ug/L			05/13/25 20:16	5
Ethylbenzene	ND		5.0	2.1	ug/L			05/13/25 20:16	5
Hexane	ND		5.0	1.9	ug/L			05/13/25 20:16	5
m-Xylene & p-Xylene	ND		10	2.1	ug/L			05/13/25 20:16	5
2-Butanone (MEK)	ND		50	5.8	ug/L			05/13/25 20:16	5
4-Methyl-2-pentanone (MIBK)	ND		50	5.0	ug/L			05/13/25 20:16	5
Methylene Chloride	ND		25	13	ug/L			05/13/25 20:16	5
o-Xylene	ND		5.0		ug/L			05/13/25 20:16	5
Styrene	ND		5.0		ug/L			05/13/25 20:16	5
Tetrachloroethene	ND		5.0	2.2	ug/L			05/13/25 20:16	5
Toluene	ND		5.0		ug/L			05/13/25 20:16	5
trans-1,2-Dichloroethene	8.4		5.0		ug/L			05/13/25 20:16	5
trans-1,3-Dichloropropene	ND		5.0		ug/L			05/13/25 20:16	5
Trichloroethene	39		5.0	2.2	ug/L			05/13/25 20:16	5
Vinyl chloride	210		5.0		ug/L			05/13/25 20:16	5
Xylenes, Total	ND		10		ug/L			05/13/25 20:16	5
Chlorodibromomethane	ND		5.0		ug/L			05/13/25 20:16	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137					05/13/25 20:16	5
4-Bromofluorobenzene (Surr)	90		56 - 136					05/13/25 20:16	5

05/13/25 20:16

Client: Key Environmental, Inc Job ID: 240-223713-1

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-OS-1-I Lab Sample ID: 240-223713-4

Date Collected: 05/05/25 12:50 Matrix: Water

Date Received: 05/06/25 09:20

Method: SW846 8260D - Volatile Organic Compounds by GC/MS - RA (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	78 - 122		05/13/25 20:16	5
Dibromofluoromethane (Surr)	104	73 - 120		05/13/25 20:16	5

5

6

8

10

12

13

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: M-99 Lab Sample ID: 240-223713-5

Date Collected: 05/05/25 00:00 Date Received: 05/06/25 09:20 **Matrix: Water**

Job ID: 240-223713-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.48	ug/L			05/12/25 21:27	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.60	ug/L			05/12/25 21:27	1
1,1,2-Trichloroethane	ND		1.0	0.48	ug/L			05/12/25 21:27	1
1,1-Dichloroethane	ND		1.0	0.47	ug/L			05/12/25 21:27	1
1,1-Dichloroethene	38		1.0	0.49	ug/L			05/12/25 21:27	1
1,2-Dichloroethane	ND		1.0	0.46	ug/L			05/12/25 21:27	1
1,2-Dichloropropane	ND		1.0	0.47	ug/L			05/12/25 21:27	1
2-Hexanone	ND		10	1.1	ug/L			05/12/25 21:27	1
Acetone	ND		10	5.4	ug/L			05/12/25 21:27	1
Benzene	ND		1.0	0.42	ug/L			05/12/25 21:27	1
Bromoform	ND		1.0	0.76	ug/L			05/12/25 21:27	1
Bromomethane	ND		1.0	0.42	ug/L			05/12/25 21:27	1
Carbon disulfide	ND		1.0	0.59	ug/L			05/12/25 21:27	1
Carbon tetrachloride	ND		1.0	0.26	ug/L			05/12/25 21:27	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/12/25 21:27	1
Chloroethane	ND		1.0	0.83	ug/L			05/12/25 21:27	1
Chloroform	ND		1.0	0.47	ug/L			05/12/25 21:27	1
Chloromethane	ND		1.0	0.63	ug/L			05/12/25 21:27	1
cis-1,2-Dichloroethene	1700		40	18	ug/L			05/13/25 18:19	40
cis-1,3-Dichloropropene	ND		1.0	0.61	ug/L			05/12/25 21:27	1
Dichlorobromomethane	ND		1.0	0.38	ug/L			05/12/25 21:27	1
Ethylbenzene	ND		1.0	0.42	ug/L			05/12/25 21:27	1
Hexane	ND		1.0	0.37	ug/L			05/12/25 21:27	1
m-Xylene & p-Xylene	ND		2.0	0.42	ug/L			05/12/25 21:27	1
2-Butanone (MEK)	ND		10	1.2	ug/L			05/12/25 21:27	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			05/12/25 21:27	1
Methylene Chloride	ND		5.0		ug/L			05/12/25 21:27	1
o-Xylene	ND		1.0		ug/L			05/12/25 21:27	1
Styrene	ND		1.0		ug/L			05/12/25 21:27	1
Tetrachloroethene	ND		1.0		ug/L			05/12/25 21:27	1
Toluene	ND		1.0	0.44	ug/L			05/12/25 21:27	1
trans-1,2-Dichloroethene	8.3		1.0		ug/L			05/12/25 21:27	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/12/25 21:27	1
Trichloroethene	40		1.0		ug/L			05/12/25 21:27	1
Vinyl chloride	200		40		ug/L			05/13/25 18:19	40
Xylenes, Total	ND		2.0		ug/L			05/12/25 21:27	1
Chlorodibromomethane	ND		1.0		ug/L			05/12/25 21:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					05/12/25 21:27	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared Ana	lyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	62 - 137	05/12/	25 21:27	1
1,2-Dichloroethane-d4 (Surr)	105	62 - 137	05/13/	25 18:19	40
4-Bromofluorobenzene (Surr)	96	56 ₋ 136	05/12/	25 21:27	1
4-Bromofluorobenzene (Surr)	95	56 ₋ 136	05/13/.	25 18:19	40
Toluene-d8 (Surr)	97	78 ₋ 122	05/12/	25 21:27	1
Toluene-d8 (Surr)	101	78 - 122	05/13/	25 18:19	40
Dibromofluoromethane (Surr)	100	73 - 120	05/12/	25 21:27	1
Dibromofluoromethane (Surr)	106	73 - 120	05/13/	25 18:19	40

Eurofins Cleveland

2

5

Ω

9

10

4 /

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: MW-OS-2

Lab Sample ID: 240-223713-6

Date Collected: 05/05/25 13:15 Date Received: 05/06/25 09:20

Dibromofluoromethane (Surr)

Lab	Sample	ID:	240-223713-6	
			Matrix: Water	

Job ID: 240-223713-1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.48	ug/L			05/13/25 17:55	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.60	ug/L			05/13/25 17:55	1
1,1,2-Trichloroethane	ND		1.0	0.48	ug/L			05/13/25 17:55	1
1,1-Dichloroethane	ND		1.0	0.47	ug/L			05/13/25 17:55	1
1,1-Dichloroethene	ND		1.0	0.49	ug/L			05/13/25 17:55	1
1,2-Dichloroethane	ND		1.0	0.46	ug/L			05/13/25 17:55	1
1,2-Dichloropropane	ND		1.0	0.47	ug/L			05/13/25 17:55	1
2-Hexanone	ND		10	1.1	ug/L			05/13/25 17:55	1
Acetone	ND		10	5.4	ug/L			05/13/25 17:55	1
Benzene	ND		1.0	0.42	ug/L			05/13/25 17:55	1
Bromoform	ND		1.0	0.76	ug/L			05/13/25 17:55	1
Bromomethane	ND		1.0	0.42	ug/L			05/13/25 17:55	1
Carbon disulfide	ND		1.0	0.59	ug/L			05/13/25 17:55	1
Carbon tetrachloride	ND		1.0	0.26	ug/L			05/13/25 17:55	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/13/25 17:55	1
Chloroethane	ND		1.0	0.83	ug/L			05/13/25 17:55	1
Chloroform	ND		1.0	0.47	ug/L			05/13/25 17:55	1
Chloromethane	ND		1.0	0.63	ug/L			05/13/25 17:55	1
cis-1,2-Dichloroethene	ND		1.0	0.46	ug/L			05/13/25 17:55	1
cis-1,3-Dichloropropene	ND		1.0	0.61	ug/L			05/13/25 17:55	1
Dichlorobromomethane	ND		1.0	0.38	ug/L			05/13/25 17:55	1
Ethylbenzene	ND		1.0	0.42	ug/L			05/13/25 17:55	1
Hexane	ND		1.0	0.37	ug/L			05/13/25 17:55	1
m-Xylene & p-Xylene	ND		2.0	0.42	ug/L			05/13/25 17:55	1
2-Butanone (MEK)	ND		10	1.2	ug/L			05/13/25 17:55	1
4-Methyl-2-pentanone (MIBK)	ND		10	0.99	ug/L			05/13/25 17:55	1
Methylene Chloride	ND		5.0	2.6	ug/L			05/13/25 17:55	1
o-Xylene	ND		1.0	0.42	ug/L			05/13/25 17:55	1
Styrene	ND		1.0	0.45	ug/L			05/13/25 17:55	1
Tetrachloroethene	ND		1.0	0.44	ug/L			05/13/25 17:55	1
Toluene	ND		1.0	0.44	ug/L			05/13/25 17:55	1
trans-1,2-Dichloroethene	ND		1.0	0.51	ug/L			05/13/25 17:55	1
trans-1,3-Dichloropropene	ND		1.0	0.67	ug/L			05/13/25 17:55	1
Trichloroethene	ND		1.0	0.44	ug/L			05/13/25 17:55	1
Vinyl chloride	ND		1.0	0.45	ug/L			05/13/25 17:55	1
Xylenes, Total	ND		2.0	0.42	ug/L			05/13/25 17:55	1
Chlorodibromomethane	ND		1.0	0.39	ug/L			05/13/25 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		62 - 137					05/13/25 17:55	1
4-Bromofluorobenzene (Surr)	92		56 - 136					05/13/25 17:55	1
Toluene-d8 (Surr)	97		78 - 122					05/13/25 17:55	1
			F HO EXPENSES 1 1 1 1 1 1						

Eurofins Cleveland

05/13/25 17:55

73 - 120

104

5

7

0

10

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: TB-1

Lab Sample ID: 240-223713-7

Date Collected: 05/05/25 05:00

Matrix: Water

Date Received: 05/06/25 09:20

Analyte	Result Qualific	er RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.48	ug/L			05/12/25 19:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.60	ug/L			05/12/25 19:07	1
1,1,2-Trichloroethane	ND	1.0	0.48	ug/L			05/12/25 19:07	1
1,1-Dichloroethane	ND	1.0	0.47	ug/L			05/12/25 19:07	1
1,1-Dichloroethene	ND	1.0	0.49	ug/L			05/12/25 19:07	1
1,2-Dichloroethane	ND	1.0	0.46	ug/L			05/12/25 19:07	1
1,2-Dichloropropane	ND	1.0	0.47	ug/L			05/12/25 19:07	1
2-Hexanone	ND	10	1.1	ug/L			05/12/25 19:07	1
Acetone	ND	10	5.4	ug/L			05/12/25 19:07	1
Benzene	ND	1.0	0.42	ug/L			05/12/25 19:07	1
Bromoform	ND	1.0	0.76	ug/L			05/12/25 19:07	1
Bromomethane	ND	1.0	0.42	ug/L			05/12/25 19:07	1
Carbon disulfide	ND	1.0	0.59	ug/L			05/12/25 19:07	1
Carbon tetrachloride	ND	1.0	0.26	ug/L			05/12/25 19:07	1
Chlorobenzene	ND	1.0	0.38	ug/L			05/12/25 19:07	1
Chloroethane	ND	1.0	0.83	ug/L			05/12/25 19:07	1
Chloroform	ND	1.0	0.47	ug/L			05/12/25 19:07	1
Chloromethane	ND	1.0	0.63	ug/L			05/12/25 19:07	1
cis-1,2-Dichloroethene	ND	1.0	0.46				05/12/25 19:07	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			05/12/25 19:07	1
Dichlorobromomethane	ND	1.0	0.38				05/12/25 19:07	1
Ethylbenzene	ND	1.0		ug/L			05/12/25 19:07	1
Hexane	ND	1.0		ug/L			05/12/25 19:07	1
m-Xylene & p-Xylene	ND	2.0		ug/L			05/12/25 19:07	1
2-Butanone (MEK)	ND	10		ug/L			05/12/25 19:07	1
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			05/12/25 19:07	1
Methylene Chloride	ND	5.0		ug/L			05/12/25 19:07	1
o-Xylene	ND	1.0		ug/L			05/12/25 19:07	1
Styrene	ND	1.0		ug/L			05/12/25 19:07	1
Tetrachloroethene	ND	1.0		ug/L			05/12/25 19:07	1
Toluene	ND	1.0	0.44	ug/L			05/12/25 19:07	1
trans-1,2-Dichloroethene	ND	1.0	0.51				05/12/25 19:07	1
trans-1,3-Dichloropropene	ND	1.0	0.67	-			05/12/25 19:07	1
Trichloroethene	ND	1.0	0.44				05/12/25 19:07	1
Vinyl chloride	ND	1.0	0.45				05/12/25 19:07	1
Xylenes, Total	ND	2.0	0.42				05/12/25 19:07	1
Chlorodibromomethane	ND	1.0		ug/L			05/12/25 19:07	1
Surrogate	%Recovery Qualific	er Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	62 - 137					05/12/25 19:07	1
4-Bromofluorobenzene (Surr)	103	56 - 136					05/12/25 19:07	1
Toluene-d8 (Surr)	100	78 - 122					05/12/25 19:07	1
Dibromofluoromethane (Surr)	108	73 - 120					05/12/25 19:07	1

Eurofins Cleveland

2

Job ID: 240-223713-1

3

7

0

10

10

Surrogate Summary

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Job ID: 240-223713-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	gate Recovery (Acceptance Limits)	
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)	
240-223713-1	MW-C-I	107	103	103	109	
240-223713-1 - RA	MW-C-I	109	105	109	113	
240-223713-2 - RA	MW-D-S	98	90	96	100	
240-223713-2	MW-D-S	101	89	95	103	
240-223713-2 MS	MW-D-S	97	103	97	102	
240-223713-2 MS	MW-D-S	94	102	100	96	
240-223713-2 MSD	MW-D-S	100	107	101	105	
240-223713-2 MSD	MW-D-S	101	105	103	106	
240-223713-3	MW-I-S	101	90	94	102	
240-223713-4	MW-OS-1-I	108	102	104	111	
240-223713-4 - RA	MW-OS-1-I	99	90	96	104	
240-223713-5	M-99	98	96	97	100	
240-223713-5	M-99	105	95	101	106	
240-223713-6	MW-OS-2	103	92	97	104	
240-223713-7	TB-1	104	103	100	108	
LCS 240-655564/5	Lab Control Sample	94	99	97	99	
LCS 240-655733/5	Lab Control Sample	94	104	98	98	
MB 240-655564/10	Method Blank	98	94	95	99	
MB 240-655733/10	Method Blank	103	98	101	107	
Surrogate Legend						

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-655564/10

Matrix: Water

Analysis Batch: 655564

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 240-223713-1

MB MB **MDL** Unit Dil Fac Analyte Result Qualifier RL D **Prepared Analyzed** 1,1,1-Trichloroethane ND 1.0 0.48 ug/L 05/12/25 13:16 1,1,2,2-Tetrachloroethane ND 1.0 0.60 ug/L 05/12/25 13:16 1 1,1,2-Trichloroethane ND 1.0 0.48 ug/L 05/12/25 13:16 1 1.1-Dichloroethane ND 1.0 0.47 ug/L 05/12/25 13:16 1 1,1-Dichloroethene ND 1.0 0.49 ug/L 05/12/25 13:16 1 1,2-Dichloroethane ND 1.0 0.46 ug/L 05/12/25 13:16 1 1,2-Dichloropropane ND 1.0 0.47 ug/L 05/12/25 13:16 2-Hexanone ND 10 1.1 ug/L 05/12/25 13:16 ND 10 Acetone 5.4 ug/L 05/12/25 13:16 Benzene ND 1.0 0.42 ug/L 05/12/25 13:16 Bromoform ND 1.0 0.76 ug/L 05/12/25 13:16 1 Bromomethane ND 1.0 0.42 ug/L 05/12/25 13:16 0.59 ug/L Carbon disulfide ND 1.0 05/12/25 13:16 Carbon tetrachloride ND 1.0 0.26 ug/L 05/12/25 13:16 Chlorobenzene ND 1.0 0.38 ug/L 05/12/25 13:16 Chloroethane ND 1.0 0.83 ug/L 05/12/25 13:16 Chloroform ND 1.0 0.47 ug/L 05/12/25 13:16 Chloromethane ND 1.0 0.63 ug/L 05/12/25 13:16 cis-1,2-Dichloroethene ND 1.0 0.46 ug/L 05/12/25 13:16 cis-1,3-Dichloropropene ND 1.0 0.61 ug/L 05/12/25 13:16 Dichlorobromomethane ND 1.0 0.38 ug/L 05/12/25 13:16 Ethylbenzene ND 1.0 0.42 ug/L 05/12/25 13:16 ND 1.0 0.37 ug/L Hexane 05/12/25 13:16 ND 2.0 m-Xylene & p-Xylene 0.42 ug/L 05/12/25 13:16 2-Butanone (MEK) ND 10 1.2 ug/L 05/12/25 13:16 4-Methyl-2-pentanone (MIBK) ND 10 0.99 ug/L 05/12/25 13:16 Methylene Chloride ND 5.0 2.6 ug/L 05/12/25 13:16 ND 0.42 ug/L o-Xylene 1.0 05/12/25 13:16 Styrene ND 1.0 0.45 ug/L 05/12/25 13:16 Tetrachloroethene ND 0.44 ug/L 1.0 05/12/25 13:16 Toluene ND 1.0 0.44 ug/L 05/12/25 13:16 trans-1.2-Dichloroethene ND 1.0 0.51 ug/L 05/12/25 13:16 1 trans-1,3-Dichloropropene ND 1.0 0.67 ug/L 05/12/25 13:16 Trichloroethene ND 1.0 0.44 ug/L 05/12/25 13:16 05/12/25 13:16 Vinyl chloride ND 1.0 0.45 ug/L Xylenes, Total ND 2.0 0.42 ug/L 05/12/25 13:16 1 Chlorodibromomethane ND 1.0 0.39 ug/L 05/12/25 13:16

|--|

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98	62 - 137		05/12/25 13:16	1	
4-Bromofluorobenzene (Surr)	94	56 ₋ 136		05/12/25 13:16	1	
Toluene-d8 (Surr)	95	78 - 122		05/12/25 13:16	1	
Dibromofluoromethane (Surr)	99	73 - 120		05/12/25 13:16	1	

Eurofins Cleveland

2

3

4

6

8

10

11

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-655564/5

Ma

An

Client Sample ID: Lab Control Sample

Job ID: 240-223713-1

latrix: Water							Prep Type: Total/NA
nalysis Batch: 655564							
	Spike	LCS	LCS				%Rec
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1.1 Trichloroothono	20.0	10.0	-	ua/l		100	64 121

Analyte Added Result Number Qualifier Unit D %Rec Limits 1,1,1-Trichloroethane 20.0 19.9 ug/L 100 64 - 131 1,1,2-Trichloroethane 20.0 20.0 19.8 ug/L 99 70 - 138 1,1,2-Trichloroethane 20.0 21.0 ug/L 99 70 - 138 1,1-Dichloroethane 20.0 21.2 ug/L 106 63 - 134 1,2-Dichloroethane 20.0 18.3 ug/L 91 66 - 128 1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 98 75 - 133 2-Hexanore 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 99 57 - 129 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 19.2 ug/L 115 43 - 140	
1,1,2,2-Tetrachloroethane 20.0 20.0 ug/L 100 58 - 157 1,1,2-Trichloroethane 20.0 19.8 ug/L 99 70 - 138 1,1-Dichloroethane 20.0 21.0 ug/L 105 72 - 127 1,1-Dichloroethane 20.0 21.2 ug/L 106 63 - 134 1,2-Dichloroethane 20.0 18.3 ug/L 98 75 - 133 1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 90 50 - 149 Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 99 57 - 129 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromoform 20.0 19.0 <th></th>	
1,1,2-Trichloroethane 20.0 19.8 ug/L 99 70 - 138 1,1-Dichloroethane 20.0 21.0 ug/L 105 72 - 127 1,1-Dichloroethane 20.0 21.2 ug/L 106 63 - 134 1,2-Dichloropethane 20.0 18.3 ug/L 91 66 - 128 1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 90 50 - 149 Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 90 57 - 129 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromofethane 20.0 19.8 ug/L 99 57 - 129 Bromofethane 20.0 19.8 ug/L 99 57 - 129 Bromofethane 20.0 19.0 ug/L 95 55 - 137 Chlorofethane 20.0 19.0 ug/L 95 80 - 121 Chlorofethane 20.0 20.1 </td <td></td>	
1,1-Dichloroethane 20.0 21.0 ug/L 105 72 - 127 1,1-Dichloroethene 20.0 21.2 ug/L 106 63 - 134 1,2-Dichloroethane 20.0 18.3 ug/L 91 66 - 128 1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 102 43 - 167 Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 90 57 - 129 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 19.8 ug/L 99 57 - 129 Bromoform 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroform 20.0 19.0 ug/L 100 74 - 122 Chloroform 20.0 20.1 <t< td=""><td></td></t<>	
1,1-Dichloroethene 20.0 21.2 ug/L 106 63 - 134 1,2-Dichloroethane 20.0 18.3 ug/L 91 66 - 128 1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 102 43 - 167 Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 100 77 - 123 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 20.1 ug/L 104 77 - 123 cis-1,2-Dichloropropene 20.0 <	
1,2-Dichloroethane 20.0 18.3 ug/L 91 66 - 128 1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 102 43 - 167 Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 100 77 - 123 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 19.0 ug/L 72 38 - 152 Chloromethane 20.0 14.3 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichlorogropene 20.0 20	
1,2-Dichloropropane 20.0 19.6 ug/L 98 75 - 133 2-Hexanone 40.0 41.0 ug/L 102 43 - 167 Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 100 77 - 123 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 19.0 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 104 77 - 123 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 <td< td=""><td></td></td<>	
2-Hexanone 40.0 41.0 ug/L 102 43.167 Acetone 40.0 35.9 ug/L 90 50.149 Benzene 20.0 20.0 ug/L 100 77.123 Bromoform 20.0 19.8 ug/L 99 57.129 Bromomethane 20.0 13.2 ug/L 66 36.142 Carbon disulfide 20.0 22.9 ug/L 115 43.140 Carbon tetrachloride 20.0 19.0 ug/L 95 55.137 Chlorobenzene 20.0 19.0 ug/L 95 80.121 Chloroethane 20.0 14.3 ug/L 72 38.152 Chloroform 20.0 20.1 ug/L 100 74.122 Chloromethane 20.0 13.1 ug/L 66 47.143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77.123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 10 69.126 Ethylbenzene 20.0 20.1 ug/L	
Acetone 40.0 35.9 ug/L 90 50 - 149 Benzene 20.0 20.0 ug/L 100 77 - 123 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chlorothane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroptopene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 <	
Benzene 20.0 20.0 ug/L 100 77 - 123 Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0<	
Bromoform 20.0 19.8 ug/L 99 57 - 129 Bromomethane 20.0 13.2 ug/L 66 36 - 142 Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.1 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19	
Bromomethane 20.0 13.2 ug/L 66 36-142 Carbon disulfide 20.0 22.9 ug/L 115 43-140 Carbon tetrachloride 20.0 19.0 ug/L 95 55-137 Chlorobenzene 20.0 19.0 ug/L 95 80-121 Chloroethane 20.0 14.3 ug/L 72 38-152 Chloroform 20.0 20.1 ug/L 100 74-122 Chloromethane 20.0 13.1 ug/L 66 47-143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77-123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64-130 Dichlorobromomethane 20.0 20.2 ug/L 101 69-126 Ethylbenzene 20.0 20.1 ug/L 100 80-121 Hexane 20.0 19.3 ug/L 97 53-144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80-120	
Carbon disulfide 20.0 22.9 ug/L 115 43 - 140 Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Carbon tetrachloride 20.0 19.0 ug/L 95 55 - 137 Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Chlorobenzene 20.0 19.0 ug/L 95 80 - 121 Chloroethane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Chloroethane 20.0 14.3 ug/L 72 38 - 152 Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Chloroform 20.0 20.1 ug/L 100 74 - 122 Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Chloromethane 20.0 13.1 ug/L 66 47 - 143 cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
cis-1,2-Dichloroethene 20.0 20.7 ug/L 104 77 - 123 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 64 - 130 Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Dichlorobromomethane 20.0 20.2 ug/L 101 69 - 126 Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Ethylbenzene 20.0 20.1 ug/L 100 80 - 121 Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
Hexane 20.0 19.3 ug/L 97 53 - 144 m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
m-Xylene & p-Xylene 20.0 20.8 ug/L 104 80 - 120	
2-Butanone (MEK) 40.0 36.9 ug/L 92 54 - 156	
4-Methyl-2-pentanone (MIBK) 40.0 39.4 ug/L 98 46 - 158	
Methylene Chloride 20.0 21.5 ug/L 108 71 - 125	
o-Xylene 20.0 20.2 ug/L 101 80 - 123	
Styrene 20.0 20.5 ug/L 103 80 - 135	
Tetrachloroethene 20.0 19.2 ug/L 96 76 - 123	
Toluene 20.0 19.4 ug/L 97 80 - 123	
trans-1,2-Dichloroethene 20.0 20.5 ug/L 103 75 - 124	
trans-1,3-Dichloropropene 20.0 20.9 ug/L 105 57 - 129	
Trichloroethene 20.0 18.5 ug/L 93 70 - 122	
Vinyl chloride 20.0 15.4 ug/L 77 60 - 144	
Xylenes, Total 40.0 41.0 ug/L 103 80 - 121	
Chlorodibromomethane 20.0 19.8 ug/L 99 70 - 124	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		62 - 137
4-Bromofluorobenzene (Surr)	99		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	99		73 - 120

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-223713-2 MS

Matrix: Water

Analysis Batch: 655564

Client Sample ID: MW-D-S Prep Type: Total/NA

Job ID: 240-223713-1

	Sample Sample	Spike	MS	MS				%Rec	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND	20.0	19.2		ug/L		96	60 - 130	
1,1,2,2-Tetrachloroethane	ND	20.0	19.4		ug/L		97	54 - 145	
1,1,2-Trichloroethane	ND	20.0	19.0		ug/L		95	69 - 131	
1,1-Dichloroethane	ND	20.0	20.5		ug/L		102	68 - 125	
1,1-Dichloroethene	ND	20.0	20.1		ug/L		100	56 ₋ 135	
1,2-Dichloroethane	ND	20.0	17.9		ug/L		90	63 - 126	
1,2-Dichloropropane	ND	20.0	19.1		ug/L		96	69 - 130	
2-Hexanone	ND	40.0	40.9		ug/L		102	35 - 156	
Acetone	6.1 J	40.0	45.5		ug/L		99	33 - 149	
Benzene	ND	20.0	19.5		ug/L		97	64 - 128	
Bromoform	ND	20.0	18.4		ug/L		92	47 - 125	
Bromomethane	ND	20.0	12.1		ug/L		61	28 - 150	
Carbon disulfide	ND	20.0	21.1		ug/L		105	38 - 140	
Carbon tetrachloride	ND	20.0	18.2		ug/L		91	51 - 133	
Chlorobenzene	ND	20.0	18.4		ug/L		92	74 - 121	
Chloroethane	ND	20.0	13.4		ug/L		67	10 - 199	
Chloroform	ND	20.0	19.5		ug/L		98	70 - 122	
Chloromethane	ND	20.0	12.3		ug/L		61	32 - 149	
cis-1,2-Dichloroethene	15	20.0	33.4		ug/L		94	66 - 128	
cis-1,3-Dichloropropene	ND	20.0	17.1		ug/L		86	47 - 125	
Dichlorobromomethane	ND	20.0	19.4		ug/L		97	62 - 125	
Ethylbenzene	ND	20.0	20.1		ug/L		100	67 - 127	
Hexane	ND	20.0	17.3		ug/L		87	41 - 131	
m-Xylene & p-Xylene	ND	20.0	20.4		ug/L		102	71 - 123	
2-Butanone (MEK)	ND	40.0	36.8		ug/L		92	40 - 151	
4-Methyl-2-pentanone (MIBK)	ND	40.0	38.7		ug/L		97	31 - 153	
Methylene Chloride	ND	20.0	20.3		ug/L		102	62 - 129	
o-Xylene	ND	20.0	20.1		ug/L		100	70 - 125	
Styrene	ND	20.0	20.0		ug/L		100	70 - 139	
Tetrachloroethene	ND	20.0	18.8		ug/L		94	62 - 131	
Toluene	ND	20.0	18.9		ug/L		95	58 - 135	
trans-1,2-Dichloroethene	1.1	20.0	20.7		ug/L		98	56 - 136	
trans-1,3-Dichloropropene	ND	20.0	19.6		ug/L		98	47 - 120	
Vinyl chloride	ND	20.0	14.7		ug/L		74	43 - 157	
Xylenes, Total	ND	40.0	40.5		ug/L		101	71 - 123	
Chlorodibromomethane	ND	20.0	18.7		ug/L		93	65 - 120	

NS	MS
	1110

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		62 - 137
4-Bromofluorobenzene (Surr)	103		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	102		73 120

Eurofins Cleveland

3

-

b

8

10

12

LL.

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Job ID: 240-223713-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-223713-2 MSD

Matrix: Water

Methylene Chloride

Tetrachloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Chlorodibromomethane

o-Xylene

Styrene

Toluene

Vinyl chloride

Xylenes, Total

Analysis Batch: 655564											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND	-	20.0	19.6		ug/L		98	60 - 130	2	17
1,1,2,2-Tetrachloroethane	ND		20.0	19.9		ug/L		100	54 - 145	3	15
1,1,2-Trichloroethane	ND		20.0	19.4		ug/L		97	69 - 131	2	14
1,1-Dichloroethane	ND		20.0	20.5		ug/L		103	68 - 125	0	13
1,1-Dichloroethene	ND		20.0	20.1		ug/L		100	56 - 135	0	26
1,2-Dichloroethane	ND		20.0	18.2		ug/L		91	63 - 126	1	12
1,2-Dichloropropane	ND		20.0	19.6		ug/L		98	69 - 130	3	13
2-Hexanone	ND		40.0	41.2		ug/L		103	35 - 156	1	17
Acetone	6.1	J	40.0	44.2		ug/L		95	33 - 149	3	34
Benzene	ND		20.0	19.6		ug/L		98	64 - 128	1	14
Bromoform	ND		20.0	18.9		ug/L		95	47 - 125	3	15
Bromomethane	ND		20.0	12.8		ug/L		64	28 - 150	5	26
Carbon disulfide	ND		20.0	21.2		ug/L		106	38 - 140	1	23
Carbon tetrachloride	ND		20.0	18.1		ug/L		91	51 - 133	0	24
Chlorobenzene	ND		20.0	18.5		ug/L		92	74 - 121	0	14
Chloroethane	ND		20.0	13.7		ug/L		69	10 - 199	2	30
Chloroform	ND		20.0	19.6		ug/L		98	70 - 122	0	14
Chloromethane	ND		20.0	12.3		ug/L		61	32 - 149	0	27
cis-1,2-Dichloroethene	15		20.0	33.7		ug/L		96	66 - 128	1	14
cis-1,3-Dichloropropene	ND		20.0	17.2		ug/L		86	47 - 125	0	13
Dichlorobromomethane	ND		20.0	19.5		ug/L		97	62 - 125	1	13
Ethylbenzene	ND		20.0	19.7		ug/L		98	67 - 127	2	15
Hexane	ND		20.0	17.4		ug/L		87	41 - 131	1	35
m-Xylene & p-Xylene	ND		20.0	20.0		ug/L		100	71 - 123	2	16
2-Butanone (MEK)	ND		40.0	38.4		ug/L		96	40 - 151	4	20
4-Methyl-2-pentanone (MIBK)	ND		40.0	39.1		ug/L		98	31 - 153	1	15
										120	

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

40.0

20.0

20.9

19.8

20.1

18.3

18.9

21.0

20.1

15.2

39.8

18.6

ug/L

105

99

100

92

94

99

100

76

100

93

62 - 129

70 - 125

70 - 139

62 - 131

58 - 135

56 - 136

47 - 120

43 - 157

71 - 123

65 - 120

ND

ND

ND

ND

ND

1.1

ND

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	107		56 - 136
Toluene-d8 (Surr)	101		78 - 122
Dibromofluoromethane (Surr)	105		73 - 120

Eurofins Cleveland

Client Sample ID: MW-D-S

Prep Type: Total/NA

3

1

2

1

2

3

2

17

15

18

20

14

15

14

24

15

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Job ID: 240-223713-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 240-655733/10

Matrix: Water

Analysis Batch: 655733

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qu	ualifier RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0		ug/L	=	ricparca	05/13/25 11:40	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			05/13/25 11:40	1
1,1,2-Trichloroethane	ND	1.0		ug/L			05/13/25 11:40	1
1,1-Dichloroethane	ND	1.0		ug/L			05/13/25 11:40	1
1,1-Dichloroethene	ND	1.0		ug/L			05/13/25 11:40	1
1,2-Dichloroethane	ND	1.0		ug/L			05/13/25 11:40	1
1,2-Dichloropropane	ND	1.0		ug/L			05/13/25 11:40	1
2-Hexanone	ND	10	1.1				05/13/25 11:40	1
Acetone	ND	10		ug/L			05/13/25 11:40	1
Benzene	ND	1.0		ug/L			05/13/25 11:40	1
Bromoform	ND	1.0		ug/L			05/13/25 11:40	1
Bromomethane	ND	1.0		ug/L			05/13/25 11:40	1
Carbon disulfide	ND	1.0		ug/L			05/13/25 11:40	1
Carbon tetrachloride	ND	1.0		ug/L			05/13/25 11:40	1
Chlorobenzene	ND	1.0		ug/L			05/13/25 11:40	1
Chloroethane	ND	1.0		ug/L			05/13/25 11:40	1
Chloroform	ND	1.0		ug/L			05/13/25 11:40	1
Chloromethane	ND	1.0		ug/L			05/13/25 11:40	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			05/13/25 11:40	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			05/13/25 11:40	1
Dichlorobromomethane	ND	1.0		ug/L			05/13/25 11:40	1
Ethylbenzene	ND	1.0		ug/L			05/13/25 11:40	1
Hexane	ND	1.0		ug/L			05/13/25 11:40	1
m-Xylene & p-Xylene	ND	2.0	0.42	ug/L			05/13/25 11:40	1
2-Butanone (MEK)	ND	10		ug/L			05/13/25 11:40	1
4-Methyl-2-pentanone (MIBK)	ND	10	0.99	ug/L			05/13/25 11:40	1
Methylene Chloride	ND	5.0	2.6	ug/L			05/13/25 11:40	1
o-Xylene	ND	1.0	0.42	ug/L			05/13/25 11:40	1
Styrene	ND	1.0	0.45	ug/L			05/13/25 11:40	1
Tetrachloroethene	ND	1.0	0.44	ug/L			05/13/25 11:40	1
Toluene	ND	1.0	0.44	ug/L			05/13/25 11:40	1
trans-1,2-Dichloroethene	ND	1.0	0.51	ug/L			05/13/25 11:40	1
trans-1,3-Dichloropropene	ND	1.0	0.67	ug/L			05/13/25 11:40	1
Trichloroethene	ND	1.0	0.44	ug/L			05/13/25 11:40	1
Vinyl chloride	ND	1.0	0.45	ug/L			05/13/25 11:40	1
Xylenes, Total	ND	2.0	0.42	ug/L			05/13/25 11:40	1
Chlorodibromomethane	ND	1.0	0.39	ug/L			05/13/25 11:40	1

ID	MD
_	IVID

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	d Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	62 - 137	05/13/25 11	:40 1
4-Bromofluorobenzene (Surr)	98	56 - 136	05/13/25 11	:40 1
Toluene-d8 (Surr)	101	78 - 122	05/13/25 11	:40 1
Dibromofluoromethane (Surr)	107	73 - 120	05/13/25 11	.40 1

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-655733/5

Matrix: Water

Analysis Batch: 655733

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 240-223713-1

Allalysis Batch. 055755	Spike	LCS	LCS				%Rec	
Analyte	Added			Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.1		ug/L		96	64 - 131	_
1,1,2,2-Tetrachloroethane	20.0	20.2		ug/L		101	58 - 157	
1,1,2-Trichloroethane	20.0	20.1		ug/L		100	70 - 138	
1,1-Dichloroethane	20.0	20.1		ug/L		101	72 - 127	
1,1-Dichloroethene	20.0	19.5		ug/L		98	63 - 134	
1,2-Dichloroethane	20.0	18.1		ug/L		91	66 - 128	
1,2-Dichloropropane	20.0	20.0		ug/L		100	75 - 133	
2-Hexanone	40.0	44.7		ug/L		112	43 - 167	
Acetone	40.0	40.5		ug/L		101	50 - 149	
Benzene	20.0	19.7		ug/L		98	77 - 123	
Bromoform	20.0	21.2		ug/L		106	57 - 129	
Bromomethane	20.0	13.7		ug/L		69	36 - 142	
Carbon disulfide	20.0	22.6		ug/L		113	43 - 140	
Carbon tetrachloride	20.0	18.2		ug/L		91	55 - 137	
Chlorobenzene	20.0	19.2		ug/L		96	80 - 121	
Chloroethane	20.0	14.5		ug/L		72	38 - 152	
Chloroform	20.0	19.4		ug/L		97	74 - 122	
Chloromethane	20.0	13.5		ug/L		68	47 - 143	
cis-1,2-Dichloroethene	20.0	19.6		ug/L		98	77 - 123	
cis-1,3-Dichloropropene	20.0	19.0		ug/L		95	64 - 130	
Dichlorobromomethane	20.0	20.2		ug/L		101	69 - 126	
Ethylbenzene	20.0	20.4		ug/L		102	80 - 121	
Hexane	20.0	18.2		ug/L		91	53 - 144	
m-Xylene & p-Xylene	20.0	21.0		ug/L		105	80 - 120	
2-Butanone (MEK)	40.0	38.9		ug/L		97	54 - 156	
4-Methyl-2-pentanone (MIBK)	40.0	42.4		ug/L		106	46 - 158	
Methylene Chloride	20.0	20.9		ug/L		104	71 - 125	
o-Xylene	20.0	20.4		ug/L		102	80 - 123	
Styrene	20.0	21.1		ug/L		105	80 - 135	
Tetrachloroethene	20.0	18.1		ug/L		91	76 - 123	
Toluene	20.0	19.3		ug/L		96	80 - 123	
trans-1,2-Dichloroethene	20.0	19.3		ug/L		97	75 - 124	
trans-1,3-Dichloropropene	20.0	21.7		ug/L		108	57 - 129	
Trichloroethene	20.0	18.0		ug/L		90	70 - 122	
Vinyl chloride	20.0	15.7		ug/L		78	60 - 144	
Xylenes, Total	40.0	41.4		ug/L		104	80 - 121	
Chlorodibromomethane	20.0	20.2		ug/L		101	70 - 124	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		62 - 137
4-Bromofluorobenzene (Surr)	104		56 ₋ 136
Toluene-d8 (Surr)	98		78 - 122
Dibromofluoromethane (Surr)	98		73 - 120

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Job ID: 240-223713-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

102

100

Lab Sample ID: 240-223713-2 MS Client Sample ID: MW-D-S **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 655733

,	Sample	Sample	Spike	MS	Me				%Rec	
1.5.55										
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichloroethene	100	F1	40.0	92.9	F1	ug/L		-19	61 - 124	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	94		62 - 137							

56 - 136

78 - 122

73 - 120 Dibromofluoromethane (Surr) 96 Client Sample ID: MW-D-S Lab Sample ID: 240-223713-2 MSD **Prep Type: Total/NA**

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 655733

4-Bromofluorobenzene (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethene	100	F1	40.0	99.2	F1	ug/L		-3	61 - 124	7	15

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		62 - 137
4-Bromofluorobenzene (Surr)	105		56 - 136
Toluene-d8 (Surr)	103		78 - 122
Dibromofluoromethane (Surr)	106		73 - 120

QC Association Summary

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

GC/MS VOA

Analysis Batch: 655564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-223713-1	MW-C-I	Total/NA	Water	8260D	
240-223713-2 - RA	MW-D-S	Total/NA	Water	8260D	
240-223713-4	MW-OS-1-I	Total/NA	Water	8260D	
240-223713-5	M-99	Total/NA	Water	8260D	
240-223713-7	TB-1	Total/NA	Water	8260D	
MB 240-655564/10	Method Blank	Total/NA	Water	8260D	
LCS 240-655564/5	Lab Control Sample	Total/NA	Water	8260D	
240-223713-2 MS	MW-D-S	Total/NA	Water	8260D	
240-223713-2 MSD	MW-D-S	Total/NA	Water	8260D	

Analysis Batch: 655733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-223713-1 - RA	MW-C-I	Total/NA	Water	8260D	
240-223713-2	MW-D-S	Total/NA	Water	8260D	
240-223713-3	MW-I-S	Total/NA	Water	8260D	
240-223713-4 - RA	MW-OS-1-I	Total/NA	Water	8260D	
240-223713-5	M-99	Total/NA	Water	8260D	
240-223713-6	MW-OS-2	Total/NA	Water	8260D	
MB 240-655733/10	Method Blank	Total/NA	Water	8260D	
LCS 240-655733/5	Lab Control Sample	Total/NA	Water	8260D	
240-223713-2 MS	MW-D-S	Total/NA	Water	8260D	
240-223713-2 MSD	MW-D-S	Total/NA	Water	8260D	

Job ID: 240-223713-1

K

4

6

8

9

44

12

13

Lab Chronicle

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Lab Sample ID: 240-223713-1 Client Sample ID: MW-C-I

Date Collected: 05/05/25 10:20 **Matrix: Water** Date Received: 05/06/25 09:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		50	655564	AJS	EET CLE	05/12/25 19:30
Total/NA	Analysis	8260D	RA	5	655733	AJS	EET CLE	05/13/25 19:52

Client Sample ID: MW-D-S Lab Sample ID: 240-223713-2

Date Collected: 05/05/25 11:10 **Matrix: Water**

Date Received: 05/06/25 09:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D	RA	1	655564	AJS	EET CLE	05/12/25 19:54
Total/NA	Analysis	8260D		2	655733	AJS	EET CLE	05/13/25 18:42

Client Sample ID: MW-I-S Lab Sample ID: 240-223713-3

Date Collected: 05/05/25 12:00 **Matrix: Water**

Date Received: 05/06/25 09:20

Batch Dilution **Batch** Prepared **Batch Prep Type** or Analyzed Type Method Run **Factor** Number Analyst Lab Total/NA 655733 AJS EET CLE 05/13/25 17:32 Analysis 8260D

Lab Sample ID: 240-223713-4 Client Sample ID: MW-OS-1-I

Date Collected: 05/05/25 12:50 **Matrix: Water**

Date Received: 05/06/25 09:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		50	655564	AJS	EET CLE	05/12/25 22:14
Total/NA	Analysis	8260D	RA	5	655733	AJS	EET CLE	05/13/25 20:16

Client Sample ID: M-99 Lab Sample ID: 240-223713-5

Date Collected: 05/05/25 00:00 **Matrix: Water**

Date Received: 05/06/25 09:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	655564	AJS	EET CLE	05/12/25 21:27
Total/NA	Analysis	8260D		40	655733	AJS	EET CLE	05/13/25 18:19

Lab Sample ID: 240-223713-6 Client Sample ID: MW-OS-2

Date Collected: 05/05/25 13:15 **Matrix: Water**

Date Received: 05/06/25 09:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	655733	AJS	EET CLE	05/13/25 17:55

Eurofins Cleveland

Job ID: 240-223713-1

Lab Chronicle

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Client Sample ID: TB-1 Lab Sample ID: 240-223713-7

Date Collected: 05/05/25 05:00
Date Received: 05/06/25 09:20

Matrix: Water

Job ID: 240-223713-1

Dilution Batch Batch Batch Prepared **Prep Type** Method Run Number Analyst or Analyzed Type **Factor** Lab 05/12/25 19:07 Total/NA Analysis 8260D 655564 AJS EET CLE

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

3

4

5

7

0

10

12

70

Accreditation/Certification Summary

Client: Key Environmental, Inc

Project/Site: Alcoa - Wearever - Chillicothe

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0806	12-31-26
Georgia	State	4062	02-27-26
Illinois	NELAP	200004	07-02-25
lowa	State	421	05-31-25
Kansas	NELAP	E-10336	01-31-26
Kentucky (UST)	State	112225	02-28-26
Kentucky (WW)	State	KY98016	12-31-25
Minnesota	NELAP	039-999-348	12-31-25
New Hampshire	NELAP	225024	09-30-25
New Jersey	NELAP	OH001	06-30-25
New York	NELAP	10975	05-26-25
North Dakota	State	R-244	02-27-26
Ohio	State	8303	11-04-25
Ohio VAP	State	ORELAP 4062	02-28-26
Oregon	NELAP	4062	02-27-26
Pennsylvania	NELAP	68-00340	08-31-25
Texas	NELAP	T104704517-22-19	08-31-25
US Fish & Wildlife	US Federal Programs	A26406	02-28-26
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	06-15-25
West Virginia DEP	State	210	12-31-25
Wisconsin	State	399167560	08-31-25

2

Job ID: 240-223713-1

3

4

6

8

9

19

14 ve7/f04/22025 (Rev. 1) **Environment Testing** Special Instructions/Note: 240-223713 COC . Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 240-132285-24798.1 Preservation Codes: A - HCL : eurofins Page: Page 1 of 1 Job #: Date/Time: Total Number of containers Date/Time: Method of Shipment Carrier Tracking No(s): **Analysis Requested** Received W. Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements Lab PM: Brown, Shali E-Mail: Shali. Brown@et.eurofinsus.com Retum To Client Received by: X XXX XXXX 8460D-8460B-PP VOC'S X X XXX XXX XX Chain of Custody Record XXX Page 31 of 34 BT-Tissue, A-Air) Preservation Code: Matrix 3 Company Company 3 ٤ 3 3 7 Radiological 724-312-2949 Type (C=comp, G=grab) S Josh Furman :MSID: 6 9 6 6 1630 Compliance Project: △ Yes △ No Purchase Order not required 1020 0111 Sample S/S/25 1250 5/5/as 1315 Time 5/5/45 1110 5/5/as 1200 0500 5/5/25 0000 Date: ☐ Poison B ☑ Unknown TAT Requested (days): Due Date Requested: Date/Time: S/S/AS Date/Time: 5/5/45 Sample Date 5/2/95 2/8/8 Project #: 24006086 SSOW#: Date/Time: *OM Phone: 4757 Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) MW-D-5 MS/MSD John Furmer Phone: 330-497-9396 Fax: 330-497-0772 ハダーバート こしてなる MW-05-1-1 インターロー MW-05-2 Possible Hazard Identification
Non-Hazard Plammable M-99 **Eurofins Cleveland** T8-1 180 S. Van Buren Avenue Empty Kit Relinquished by: HPappert.2006@f-ts.com Client Information Key Environmental, Inc Barberton, OH 44203 Sample Identification 412-429-2694(Tel) 200 Third Avenue Alcoa - Wearever Hank Pappert Relinquished by: Relinquished by: elinquished by: State, Zip: PA, 15106 Carnegie

	Sample Receipt Form/N	arrative	Login	# •	
Barberton Facility	MAMONT			Cooler unpacked by	
	vonment S14125	Site NameOpened on	3 Card	JMceosco	
Cooler Received on	UPS FAS Waypoint			<u> </u>	
Receipt After-hours D			ins Courier age Location	Otner	
Eurofins Cooler #			Other		
Packing material us		am Plastic Bag None		Whitehamous National College Williams	
COOLANT		Dry Ice Water None			
-Were the seals on -Were tamper/cust -Were tamper/cust 3 Shippers' packing sh	y seals on the outside of the the outside of the cooler (stody seals on the bottle(s) tody seals intact and uncorp attached to the cooler(s)	Observed Cooler Temp 2 ne cooler(s)? If Yes Quantity s) signed & dated? or bottle kits (LLHg/MeHg) npromised?	y	Corrected Cooler Temp 2 C S No S No NA S No NA Tests that are not checked for pH by Receiving: VOAs	
	accompany the sample(s)?	I in the appropriate place?	ولي ا	TOC	
		in the appropriate place? ples clearly identified on the	COC? Y	s) No	
	in good condition (Unbro	· · · · · · · · · · · · · · · · · · ·	A.		
8 Could all bottle label	ls (ID/Date/Time) be recor	iciled with the COC?	Ye	No No	
				sample type of grab/comp(YN)?	
	s) used for the test(s) indic			s No	
	eceived to perform indicate e samples and all listed on			es No es Na	
	-17 have been checked at		1.	(M	
14 Were VOAs on the 115 Were air bubbles >6	mm in any VOA vials? nk present in the cooler(s)			es (No NA	
		by			
		-	······································		
18. CHAIN OF CUST	ODY & SAMPLE DISC	REPANCIES Cadditional		Labeled by [.] Labels Verified by [.]	
19 SAMPLE CONDIT	FION				
		were received after the reco	mmended hole	ding time had expired	
	Sample(s) were received after the recommended holding time had expired Sample(s) were received in a broken container				
Sample(s) were received with bubble >6 mm in diameter (Notify PM)					
20. SAMPLE PRESER	VATION				
Sample(s)			were fi	urther preserved in the laboratory	
Time preserved	Preservative(s) ad	ded/Lot number(s):			

VOA Sample Preservation - Date/Time VOAs Frozen.

240-223713-B-7

5/6/2025

Temperature readings

Login Container Summary Report

240-223713

7/14/2025 (Rev. 1) Preservation Preservation Container Temp Added Lot Number Container Type pΗ Client Sample ID Lab ID MW-C-1 240-223713-A-1 Voa Vial 40ml - Hydrochloric Acıd Voa Vial 40ml - Hydrochloric Acıd 240-223713-B-1 MW-C-1 MW-C-1 240-223713-C-1 Voa Vial 40ml - Hydrochloric Acid Voa Vial 40ml - Hydrochloric Acıd MW-D-5 240-223713-A-2 Voa Vial 40ml - Hydrochloric Acid 240-223713-A-2 MS MW-D-5 Voa Vial 40ml - Hydrochloric Acıd 240-223713-A-2 MW-D-5 MSD Voa Vial 40ml - Hydrochloric Acid 240-223713-B-2 MW-D-5 240-223713-B-2 MS Voa Vial 40ml - Hydrochloric Acid MW-D-5 Voa Vial 40ml - Hydrochloric Acid 240-223713-B-2 MW-D-5 MSD 240-223713-C-2 Voa Vial 40ml - Hydrochloric Acid MW-D-5 Voa Vial 40ml - Hydrochloric Acid MW-D-5 240-223713-C-2 MS Voa Vial 40ml - Hydrochloric Acid 240-223713-C-2 MW-D-5 **MSD** of 34 240-223713-A-3 Voa Vial 40ml - Hydrochloric Acid MW-I-5 240-223713-B-3 Voa Vial 40ml - Hydrochloric Acid MW-I-5 Voa Vial 40ml - Hydrochloric Acid 240-223713-C-3 MW-I-5 240-223713-A-4 Voa Vial 40ml - Hydrochloric Acid MW-05-I-1 Voa Vial 40ml - Hydrochloric Acid MW-05-I-1 240-223713-B-4 240-223713-C-4 Voa Vial 40ml - Hydrochloric Acıd MW-05-I-1 240-223713-A-5 Voa Vial 40ml - Hydrochloric Acid M-99 Voa Vial 40ml - Hydrochloric Acıd M-99 240-223713-B-5 240-223713-A-6 Voa Vial 40ml - Hydrochloric Acid MW-05-2 240-223713-B-6 Voa Vial 40ml - Hydrochloric Acid MW-05-2 Voa Vial 40ml - Hydrochloric Acid MW-05-2 240-223713-C-6 240-223713-A-7 Voa Vial 40ml - Hydrochloric Acid **TB-1**

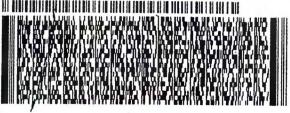
Voa Vial 40ml - Hydrochloric Acid

TB-1

eurofins 🔆

Part # 159470-434 MTW EXP 11/25 **Environment Testing TestAmerica**

ORIGIN ID:MNNA (724) 312-0 JOSHUA FURMAN TESTAMERICA PITTSBURGH LAB 301 ALPHA DR 301 ALPHA DR PITTSBURGH, PA 15238 UNITED STATES US

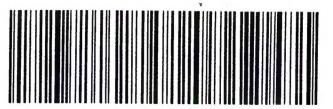

SHIP DATE: 05MAY25 ACTWGT: 25.45 LB CAD: 6570482/R0SA2630 DIMS: 18x15x12 IN

BILL THIRD PARTY

TO

EUROFINS CLEVELAND 180 S VAN BUREN AVE

BARBERTON OH 44203



FedEx Express

TRK# 8810 3053 2681

64 CAKA

TUE - 06 MAY 5:00P STANDARD OVERNIGHT AHS 44203 CLE 0H-U8

Part # 1562972335 19606 ERP 01/26

::

Key Environmental, Inc.

DATE: July 3, 2025

FROM: Kendra Chintella

SUBJECT: Wearever Groundwater

Sample Delivery Group (SDG)	Sample ID		
240-223713-1	MW-C-I, MW-D-S, MW-I-S, MW-OS-1-I, M-99 (MW-OS-1-I), MW-OS-2, TB-1		

ANALYSES: Method 8260D (VOCs)

LABORATORY: Eurofins Laboratories, Inc., Cleveland

The data contained in this SDG were evaluated with regard to the following parameters:

□ Sample Shipment

Noncompliances: None

Data Completeness

Noncompliances: None

□ Holding Times

Noncompliances: None

Laboratory Blank Contamination

Noncompliances: None

□ Field Blank Contamination

Noncompliances: None

□ Field Duplicate Precision

Noncompliances:

FIELD DUPLICATE PRECISION						
ANALYTE	MW-OS-1-I	QUAL	M-99	QUAL	RPD	
1,1-Dichloroethene	40		38		5.13	
cis-1,2-Dichloroethene	1800		1700		5.71	
trans-1,2-Dichloroethene	8.4		8.3		1.20	
Trichloroethene	39		40		2.53	
Vinyl chloride	210		200		4.88	

□ Surrogate Recovery Noncompliances: None

□ Laboratory Control Sample Noncompliances: None

□ Matrix Spike/Matrix Spike Duplicate Sample

Noncompliances:

MS/MSD Sample	Compound	Recovery	Qualification
MW-D-S	Trichloroethene	MS/MSD Below	J